Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 5;21(14):2983-2989.
doi: 10.1039/d3ob00047h.

Photoinduced NO-release from polymer dots doped with an Ir(III) complex and N-methyl- N-nitroso-4-aminophenol

Affiliations

Photoinduced NO-release from polymer dots doped with an Ir(III) complex and N-methyl- N-nitroso-4-aminophenol

Daisuke Saitoh et al. Org Biomol Chem. .

Abstract

Nitric oxide (NO) is a signaling molecule that plays a variety of functions in the human body, but it is difficult to use it in biological experiments or for therapeutic purposes because of its high reactivity and instability in the biological milieu. Consequently, photocontrollable NO releasers, which enable spatiotemporal control of NO release, have an important role in elucidating the functions of NO. Our group has developed visible-light-controllable NO-releasing molecules that contain a fluorescent dye structure as a light-harvesting antenna moiety and an N-nitrosoaminophenol structure as an NO-releasing moiety. Here, we aimed to construct an NO-generating system employing an intermolecular photoredox reaction between the two separate components, since this would simplify chemical synthesis and make it easier to examine various dyes as antennae. For this purpose, we constructed polymer nanoparticles doped with both N-methyl-N-nitroso-4-aminophenol (NAP, 1) and an Ir(III) antenna complex (2, 3 or 4) in order to dissolve in aqueous solution without a co-solvent. These polymer nanoparticles released NO upon photoirradiation in vitro in the purple (400-430 nm) or blue (400-460 nm) wavelength region to activate the doped Ir(III) complex.

PubMed Disclaimer

Publication types

LinkOut - more resources