Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Mar 7:2023.03.07.531538.
doi: 10.1101/2023.03.07.531538.

ROS-dependent palmitoylation is an obligate licensing modification for GSDMD pore formation

ROS-dependent palmitoylation is an obligate licensing modification for GSDMD pore formation

Gang Du et al. bioRxiv. .

Update in

  • ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D.
    Du G, Healy LB, David L, Walker C, El-Baba TJ, Lutomski CA, Goh B, Gu B, Pi X, Devant P, Fontana P, Dong Y, Ma X, Miao R, Balasubramanian A, Puthenveetil R, Banerjee A, Luo HR, Kagan JC, Oh SF, Robinson CV, Lieberman J, Wu H. Du G, et al. Nature. 2024 Jun;630(8016):437-446. doi: 10.1038/s41586-024-07373-5. Epub 2024 Apr 10. Nature. 2024. PMID: 38599239 Free PMC article.

Abstract

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation by forming large transmembrane pores upon cleavage by inflammatory caspases. Here we report the surprising finding that GSDMD cleavage is not sufficient for its pore formation. Instead, GSDMD is lipidated by S-palmitoylation at Cys191 upon inflammasome activation, and only palmitoylated GSDMD N-terminal domain (GSDMD-NT) is capable of membrane translocation and pore formation, suggesting that palmitoylation licenses GSDMD activation. Treatment by the palmitoylation inhibitor 2-bromopalmitate and alanine mutation of Cys191 abrogate GSDMD membrane localization, cytokine secretion, and cell death, without affecting GSDMD cleavage. Because palmitoylation is formed by a reversible thioester bond sensitive to free thiols, we tested if GSDMD palmitoylation is regulated by cellular redox state. Lipopolysaccharide (LPS) mildly and LPS plus the NLRP3 inflammasome activator nigericin markedly elevate reactive oxygen species (ROS) and GSDMD palmitoylation, suggesting that these two processes are coupled. Manipulation of cellular ROS by its activators and quenchers augment and abolish, respectively, GSDMD palmitoylation, GSDMD pore formation and cell death. We discover that zDHHC5 and zDHHC9 are the major palmitoyl transferases that mediate GSDMD palmitoylation, and when cleaved, recombinant and partly palmitoylated GSDMD is 10-fold more active in pore formation than bacterially expressed, unpalmitoylated GSDMD, evidenced by liposome leakage assay. Finally, other GSDM family members are also palmitoylated, suggesting that ROS stress and palmitoylation may be a general switch for the activation of this pore-forming family.

One-sentence summary: GSDMD palmitoylation is induced by ROS and required for pore formation.

PubMed Disclaimer

Publication types