Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Mar 9:2023.03.08.531705.
doi: 10.1101/2023.03.08.531705.

Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions

Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions

Caroline S Cencer et al. bioRxiv. .

Update in

Abstract

Differentiated transporting epithelial cells present an extensive apical array of microvilli - a "brush border" - where neighboring microvilli are linked together by intermicrovillar adhesion complexes (IMACs) composed of protocadherins CDHR2 and CDHR5. Although loss-of-function studies provide strong evidence that IMAC function is needed to build a mature brush border, how the IMAC contributes to the stabilization and accumulation of nascent microvilli remains unclear. We found that, early in differentiation, the apical surface exhibits a marginal accumulation of microvilli, characterized by higher packing density relative to medial regions of the surface. While medial microvilli are highly dynamic and sample multiple orientations over time, marginal protrusions exhibit constrained motion and maintain a vertical orientation. Unexpectedly, we found that marginal microvilli span the junctional space and contact protrusions on neighboring cells, mediated by complexes of CDHR2/CDHR5. FRAP analysis indicated that these transjunctional IMACs are highly stable relative to adhesion complexes between medial microvilli, which explains the restricted motion of protrusions in the marginal zone. Finally, long-term live imaging revealed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions of the cell. Collectively, our findings suggest that nascent microvilli are stabilized by a capture mechanism that is localized to cell margins and enabled by the transjunctional formation of IMACs. These results inform our understanding of how apical specializations are assembled in diverse epithelial systems.

PubMed Disclaimer

Publication types

LinkOut - more resources