Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Feb 23:arXiv:2302.01790v4.

Understanding metric-related pitfalls in image analysis validation

Understanding metric-related pitfalls in image analysis validation

Annika Reinke et al. ArXiv. .

Update in

  • Understanding metric-related pitfalls in image analysis validation.
    Reinke A, Tizabi MD, Baumgartner M, Eisenmann M, Heckmann-Nötzel D, Kavur AE, Rädsch T, Sudre CH, Acion L, Antonelli M, Arbel T, Bakas S, Benis A, Buettner F, Cardoso MJ, Cheplygina V, Chen J, Christodoulou E, Cimini BA, Farahani K, Ferrer L, Galdran A, van Ginneken B, Glocker B, Godau P, Hashimoto DA, Hoffman MM, Huisman M, Isensee F, Jannin P, Kahn CE, Kainmueller D, Kainz B, Karargyris A, Kleesiek J, Kofler F, Kooi T, Kopp-Schneider A, Kozubek M, Kreshuk A, Kurc T, Landman BA, Litjens G, Madani A, Maier-Hein K, Martel AL, Meijering E, Menze B, Moons KGM, Müller H, Nichyporuk B, Nickel F, Petersen J, Rafelski SM, Rajpoot N, Reyes M, Riegler MA, Rieke N, Saez-Rodriguez J, Sánchez CI, Shetty S, Summers RM, Taha AA, Tiulpin A, Tsaftaris SA, Van Calster B, Varoquaux G, Yaniv ZR, Jäger PF, Maier-Hein L. Reinke A, et al. Nat Methods. 2024 Feb;21(2):182-194. doi: 10.1038/s41592-023-02150-0. Epub 2024 Feb 12. Nat Methods. 2024. PMID: 38347140 Free PMC article. Review.

Abstract

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

PubMed Disclaimer

Publication types

LinkOut - more resources