Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun:364:114388.
doi: 10.1016/j.expneurol.2023.114388. Epub 2023 Mar 21.

GABAA receptor subunit modulation reversed electrophysiological network alterations after blast exposure in rat organotypic hippocampal slice cultures

Affiliations

GABAA receptor subunit modulation reversed electrophysiological network alterations after blast exposure in rat organotypic hippocampal slice cultures

Nevin Varghese et al. Exp Neurol. 2023 Jun.

Abstract

Throughout training and deployment, some military service members are frequently exposed to shock waves due to blasts, and some complain of myriad neurological symptoms. In rat organotypic hippocampal slice cultures (OHSCs), blast-induced traumatic brain injury (bTBI) causes deficits in some electrophysiological measures, like long term potentiation, a neuronal correlate for learning and memory. In this study, we further characterized the alterations in the hippocampal network of OHSCs following a single moderate blast exposure. Connectivity and clustering coefficients were reduced across the hippocampal network following bTBI, despite the lack of changes in the firing rate, spike amplitude, spike duration, or inter-spike interval. However, interrogation with the GABAA receptor antagonist, bicuculline, revealed additional significant differences between injured and control slices in measures of spike amplitude, spike duration, connectivity, and clustering. bTBI also significantly reduced expression of the α1 and α5 GABAA receptor subunits. Treatment with the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA) restored the α1 subunit and attenuated deficits in network measures, like connectivity and clustering coefficients. These findings suggest that GABAA receptors may be implicated in neuronal network changes in OHSCs following bTBI, and their recovery may be a viable therapeutic intervention to mitigate injury-induced neurological symptoms.

Keywords: Blast traumatic brain injury; Electrophysiology; GABA(A) receptor; Hippocampus; Neuronal network.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest No competing financial interests exist.

Publication types

Substances