Open-source tools for behavioral video analysis: Setup, methods, and best practices
- PMID: 36951911
- PMCID: PMC10036114
- DOI: 10.7554/eLife.79305
Open-source tools for behavioral video analysis: Setup, methods, and best practices
Abstract
Recently developed methods for video analysis, especially models for pose estimation and behavior classification, are transforming behavioral quantification to be more precise, scalable, and reproducible in fields such as neuroscience and ethology. These tools overcome long-standing limitations of manual scoring of video frames and traditional 'center of mass' tracking algorithms to enable video analysis at scale. The expansion of open-source tools for video acquisition and analysis has led to new experimental approaches to understand behavior. Here, we review currently available open-source tools for video analysis and discuss how to set up these methods for labs new to video recording. We also discuss best practices for developing and using video analysis methods, including community-wide standards and critical needs for the open sharing of datasets and code, more widespread comparisons of video analysis methods, and better documentation for these methods especially for new users. We encourage broader adoption and continued development of these tools, which have tremendous potential for accelerating scientific progress in understanding the brain and behavior.
Keywords: behavior; methods; neuroscience; open source; pose estimation; reproducibility; video.
© 2023, Luxem, Sun et al.
Conflict of interest statement
KL, JS, SB, KK, EY, JZ, TP, ML No competing interests declared
Figures


Similar articles
-
AnimalTA: A Step-by-Step Tutorial.Methods Mol Biol. 2025;2915:315-331. doi: 10.1007/978-1-0716-4466-9_16. Methods Mol Biol. 2025. PMID: 40249496
-
Improved 3D tracking and automated classification of rodents' behavioral activity using depth-sensing cameras.Behav Res Methods. 2020 Oct;52(5):2156-2167. doi: 10.3758/s13428-020-01381-9. Behav Res Methods. 2020. PMID: 32232737
-
PiRATeMC: A highly flexible, scalable, and low-cost system for obtaining high quality video recordings for behavioral neuroscience.Addict Neurosci. 2023 Dec;8:100108. doi: 10.1016/j.addicn.2023.100108. Epub 2023 Jun 17. Addict Neurosci. 2023. PMID: 37691741 Free PMC article.
-
Open-source software for automated rodent behavioral analysis.Front Neurosci. 2023 Apr 17;17:1149027. doi: 10.3389/fnins.2023.1149027. eCollection 2023. Front Neurosci. 2023. PMID: 37139530 Free PMC article. Review.
-
Rage Against the Machine: Advancing the study of aggression ethology via machine learning.Psychopharmacology (Berl). 2020 Sep;237(9):2569-2588. doi: 10.1007/s00213-020-05577-x. Epub 2020 Jul 9. Psychopharmacology (Berl). 2020. PMID: 32647898 Free PMC article. Review.
Cited by
-
Advances in cellular resolution microscopy for brain imaging in rats.Neurophotonics. 2023 Oct;10(4):044304. doi: 10.1117/1.NPh.10.4.044304. Epub 2023 Nov 30. Neurophotonics. 2023. PMID: 38076724 Free PMC article. Review.
-
Deep learning-based scoring method of the three-chamber social behaviour test in a mouse model of alcohol intoxication. A comparative analysis of DeepLabCut, commercial automatic tracking and manual scoring.Heliyon. 2024 Aug 28;10(17):e36352. doi: 10.1016/j.heliyon.2024.e36352. eCollection 2024 Sep 15. Heliyon. 2024. PMID: 39286202 Free PMC article.
-
Multidimensional Analysis of a Social Behavior Identifies Regression and Phenotypic Heterogeneity in a Female Mouse Model for Rett Syndrome.J Neurosci. 2024 Mar 20;44(12):e1078232023. doi: 10.1523/JNEUROSCI.1078-23.2023. J Neurosci. 2024. PMID: 38199865 Free PMC article.
-
Pose estimation and tracking dataset for multi-animal behavior analysis on the China Space Station.Sci Data. 2025 May 10;12(1):766. doi: 10.1038/s41597-025-05111-8. Sci Data. 2025. PMID: 40348756 Free PMC article.
-
Behavioral heterogeneity in host-seeking and post-feeding suppression among disease vector mosquitoes.bioRxiv [Preprint]. 2025 Jun 24:2025.06.18.660345. doi: 10.1101/2025.06.18.660345. bioRxiv. 2025. PMID: 40667366 Free PMC article. Preprint.
References
-
- Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, Fieguth P, Cao X, Khosravi A, Acharya UR, Makarenkov V, Nahavandi S. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Information Fusion. 2021;76:243–297. doi: 10.1016/j.inffus.2021.05.008. - DOI
-
- Balog M, Gaunt AL, Brockschmidt M, Nowozin S, Tarlow D. DeepCoder: Learning to Write Programs. arXiv. 2017 https://arxiv.org/abs/1611.01989
-
- Batty E, Whiteway M, Saxena S, Biderman D, Abe T, Musall S, Gillis W, Markowitz J, Churchland A, Cunningham JP, Datta SR, Linderman S, Paninski L. BehaveNet: nonlinear embedding and bayesian neural decoding of behavioral videos. Advances in Neural Information Processing Systems.2019.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources