Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 24:12:e81855.
doi: 10.7554/eLife.81855.

Memory for incidentally learned categories evolves in the post-learning interval

Affiliations

Memory for incidentally learned categories evolves in the post-learning interval

Yafit Gabay et al. Elife. .

Abstract

Humans generate categories from complex regularities evolving across even imperfect sensory input. Here, we examined the possibility that incidental experiences can generate lasting category knowledge. Adults practiced a simple visuomotor task not dependent on acoustic input. Novel categories of acoustically complex sounds were not necessary for task success but aligned incidentally with distinct visuomotor responses in the task. Incidental sound category learning emerged robustly when within-category sound exemplar variability was closely yoked to visuomotor task demands and was not apparent in the initial session when this coupling was less robust. Nonetheless, incidentally acquired sound category knowledge was evident in both cases one day later, indicative of offline learning gains and, nine days later, learning in both cases supported explicit category labeling of novel sounds. Thus, a relatively brief incidental experience with multi-dimensional sound patterns aligned with behaviorally relevant actions and events can generate new sound categories, immediately after the learning experience or a day later. These categories undergo consolidation into long-term memory to support robust generalization of learning, rather than simply reflecting recall of specific sound-pattern exemplars previously encountered. Humans thus forage for information to acquire and consolidate new knowledge that may incidentally support behavior, even when learning is not strictly necessary for performance.

Keywords: auditory categorization; category learning; human; memory consolidation; neuroscience; off-line gains.

PubMed Disclaimer

Conflict of interest statement

YG, AK, LH No competing interests declared

Figures

Figure 1.
Figure 1.. Overview of stimuli and paradigm.
(A) Four nonspeech auditory categories are defined across six exemplars (differentiated by the higher frequency component shown as different colors on the same axes, with a common lower-frequency component shown as a dashed grey line). Categories A and B are characterized by a unidimensional acoustic attribute (offset rises or falls) whereas Categories C and D cannot be defined by a single acoustic attribute and instead are multidimensional, with distributional structure in higher-order perception space (see 15). In the Systematic Multimodal Association Reaction Time (SMART) task each auditory category uniquely predicts the upcoming location of a visual target. Participants respond with a keypress to indicate the visual target location. (B) Each of three experiments involves three behavioral testing sessions (Day 1, Day 2, Day 10). The blocks labeled ‘train’ involve a consistent mapping from auditory category to visual target location (and visuomotor response), as shown in (A). Blocks 7, 10, and 13 destroy this relationship through randomization of sounds to locations to examine the impact on visuomotor response (as a response time cost). Examination of performance on Day 2 and Day 10 informs offline gains (response time facilitation), consolidation of incidental category learning, and its retention. A final overt labeling task on Day 10 measures generalization of incidental category learning to novel category exemplars (not plotted in Panel A) in an overt labeling task. (C) Exp 1 examines visuomotor task demands without auditory exemplars preceding the visual target to characterize putative visuomotor learning, consolidation and retention. Exp 2 examines incidental auditory category when, on each trial, a single category exemplar is repeated five times and predicts the upcoming location of the visual target; exemplar variability is experienced across, not within, trials. Exp 3 examines incidental learning when within-category variability is more tightly coupled to visuomotor task demands; five unique exemplars are sampled from a category on each trial and, as in Exp 2, the category identity predicts the location of the upcoming visual target.
Figure 2.
Figure 2.. Visuomotor SMART task behavior: Response time (RT).
Across all panels, the leftmost graph shows the mean and standard error of the response time (RT) to respond to the visual target, with individuals' data plotted as light grey dots across blocks in Day-1, Day-2, and Day-10 sessions. The middle graph plots the RT Cost of the Random block (Blocks 7, 10, 13) as a function of the preceding block. The rightmost graph shows the offline gain from the last block of a preceding session to the first block of the next session (Day-1 to Day-2, Day2 to Day-10). (A) Exp 1 (n=22) characterizes putative visuomotor learning, consolidation and retention without sounds preceding visual targets. (B) In Exp 2 (n=24), a consistent category-to-location association is conveyed by a single category exemplar, repeated five times on a trial; different exemplars occurred on different trials. (C) In Exp 3 (n=22), the consistent category-to-location association was conveyed by five unique category exemplars sampled from the category on each trial.
Figure 3.
Figure 3.. Retention and generalization of category knowledge.
(A) Participants label novel category exemplars at the end of the Day-10 session at above chance performance for both unidimensional and multidimensional categories in Exp 2 and Exp 3 (minimum p level = .019). (B) Generalization of category knowledge in the Day-10 explicit labeling task was positively associated with RT Cost for each session (Day-1, Day-2, and Day-10) for both Exp 2 and Exp 3. (C) In contrast, generalization of category knowledge in the Day-10 explicit labeling task was not associated with offline gains in RT (from Day-1 to Day-2 and from Day-2 to Day-10), consistent with observation of offline gains in the Exp 1 visuomotor task with no auditory stimuli.
Appendix 1—figure 1.
Appendix 1—figure 1.. Visuomotor SMART Task Behavior (Accuracy).
Across all panels, the leftmost graph shows the mean and standard error of accuracy in responding to the visual target, with individual participants’ data plotted as light grey dots across blocks in Day 1, Day 2 and Day 10 sessions. The middle graph plots the Accuracy Cost of the Random block (Blocks 7, 10, 13) as a function of the preceding block. The rightmost graph shows the offline gain from the last block of a preceding session to the first block of the next session (Day 1–2, Day 2–10). (A) Exp 1 characterizes putative visuomotor learning, consolidation and retention without sounds preceding visual targets. (B) In Exp 2, a consistent category-to-location association is conveyed by a single category exemplar, repeated five times on a trial; different exemplars occurred on different trials. (C) In Exp 3, the consistent category-to-location association was conveyed by five unique category exemplars sampled from the category on each trial.

Update of

  • doi: 10.31234/osf.io/a8ksm

References

    1. Ashby FG, Maddox WT. Human category learning. Annual Review of Psychology. 2005;56:149–178. doi: 10.1146/annurev.psych.56.091103.070217. - DOI - PubMed
    1. Ballan R, Durrant SJ, Manoach DS, Gabay Y. Failure to consolidate statistical learning in developmental dyslexia. Psychonomic Bulletin & Review. 2023;30:160–173. doi: 10.3758/s13423-022-02169-y. - DOI - PubMed
    1. Barsky MM, Tucker MA, Stickgold R. Rem sleep enhancement of probabilistic classification learning is sensitive to subsequent interference. Neurobiology of Learning and Memory. 2015;122:63–68. doi: 10.1016/j.nlm.2015.02.015. - DOI - PMC - PubMed
    1. Bjork EL, Bjork RA. Making things hard on yourself, but in a good way: creating desirable difficulties to enhance learning. Psychology and the Real World: Essays Illustrating Fundamental Contributions to Society. 2011;2:56–64.
    1. de la Chapelle A, Savard MA, Restani R, Ghaemmaghami P, Thillou N, Zardoui K, Chandrasekaran B, Coffey EBJ. Sleep affects higher-level categorization of speech sounds, but not frequency encoding. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior. 2022;154:27–45. doi: 10.1016/j.cortex.2022.04.018. - DOI - PubMed

Publication types