DDRGK1 Enhances Osteosarcoma Chemoresistance via Inhibiting KEAP1-Mediated NRF2 Ubiquitination
- PMID: 36965071
- PMCID: PMC10190621
- DOI: 10.1002/advs.202204438
DDRGK1 Enhances Osteosarcoma Chemoresistance via Inhibiting KEAP1-Mediated NRF2 Ubiquitination
Abstract
Chemoresistance is the main obstacle in osteosarcoma (OS) treatment; however, the underlying mechanism remains unclear. In this study, it is discovered that DDRGK domain-containing protein 1 (DDRGK1) plays a fundamental role in chemoresistance induced in OS. Bioinformatic and tissue analyses indicate that higher expression of DDRGK1 correlates with advanced tumor stage and poor clinical prognosis of OS. Quantitative proteomic analyses suggest that DDRGK1 plays a critical role in mitochondrial oxidative phosphorylation. DDRGK1 knockout trigger the accumulation of reactive oxygen species (ROS) and attenuate the stability of nuclear factor erythroid-2-related factor 2 (NRF2), a major antioxidant response element. Furthermore, DDRGK1 inhibits ubiquitin-proteasome-mediated degradation of NRF2 via competitive binding to the Kelch-like ECH-associated protein 1 (KEAP1) protein, which recruits NRF2 to CULLIN(CUL3). DDRGK1 knockout attenuates NRF2 stability, contributing to ROS accumulation, which promotes apoptosis and enhanced chemosensitivity to doxorubicin (DOX) and etoposide in cancer cells. Indeed, DDRGK1 knockout significantly enhances osteosarcoma chemosensitivity to DOX in vivo. The combination of DDRGK1 knockdown and DOX treatment provides a promising new avenue for the effective treatment of OS.
Keywords: DDRGK domain-containing protein 1; chemoresistance; doxorubicin; osteosarcoma; redox homeostasis.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Stiller C. A., Bielack S. S., Jundt G., Steliarova‐Foucher E., Eur. J. Cancer 2006, 42, 2124. - PubMed
-
- Gaspar N., Occean B.‐V., Pacquement H., Bompas E., Bouvier C., Brisse H. J., Castex M.‐P., Cheurfa N., Corradini N., Delaye J., Entz‐Werlé N., Gentet J.‐C., Italiano A., Lervat C., Marec‐Berard P., Mascard E., Redini F., Saumet L., Schmitt C., Tabone M.‐D., Verite‐Goulard C., Deley M.‐C. L., Piperno‐Neumann S., Brugieres L., Eur. J. Cancer 2018, 88, 57. - PubMed
-
- Smeland S., Bielack S. S., Whelan J., Bernstein M., Hogendoorn P., Krailo M. D., Gorlick R., Janeway K. A., Ingleby F. C., Anninga J., Antal I., Arndt C., Brown K. L. B., Butterfass‐Bahloul T., Calaminus G., Capra M., Dhooge C., Eriksson M., Flanagan A. M., Friedel G., Gebhardt M. C., Gelderblom H., Goldsby R., Grier H. E., Grimer R., Hawkins D. S., Hecker‐Nolting S., Hall K. S., Isakoff M. S., Jovic G., et al., Eur. J. Cancer 2019, 109, 36. - PMC - PubMed
-
- Luetke A., Meyers P. A., Lewis I., Juergens H., Cancer Treat. Rev. 2014, 40, 523. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- 82202737/National Science Foundation of China
- 82130073/National Science Foundation of China
- 92068102/National Science Foundation of China
- 2017YFB1104104/National Key R&D Program of China
- 110/Shanghai Leading Talents Program in 2020
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System
- Biomaterials and Regenerative Medicine Institute Cooperative Research Project
- 2022LHA01/Shanghai Jiaotong University School of Medicine
- 2020KY462/Medical Health Science and Technology Project of Zhejiang Province
- Shanghai Key Laboratory of Orthopedic implants
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials