Small molecule-based fluorescent probes for the detection of α-Synuclein aggregation states
- PMID: 36966976
- DOI: 10.1016/j.bmcl.2023.129257
Small molecule-based fluorescent probes for the detection of α-Synuclein aggregation states
Abstract
The formation of aggregates due to protein misfolding is encountered in various neurodegenerative diseases. α-Synuclein (α-Syn) aggregation is linked to Parkinson's disease (PD). It is one of the most prevalent neurodegenerative disorders after Alzheimer's disease. Aggregation of α-Syn is associated with Lewy body formation and degeneration of the dopaminergic neurons in the brain. These are the pathological hallmarks of PD progression. α-Syn aggregates in a multi-step process. The native unstructured α-Syn monomers combine to form oligomers, followed by amyloid fibrils, and finally Lewy bodies. Recent evidence suggests that α-Syn oligomerization and fibrils formation play major roles in PD development. α-Syn oligomeric species is the main contributor to neurotoxicity. Therefore, the detection of α-Syn oligomers and fibrils has drawn significant attention for potential diagnostic and therapeutic development. In this regard, the fluorescence strategy has become the most popular approach for following the protein aggregation process. Thioflavin T (ThT) is the most frequently used probe for monitoring amyloid kinetics. Unfortunately, it suffers from several significant drawbacks including the inability to detect neurotoxic oligomers. Researchers developed several small molecule-based advanced fluorescent probes compared to ThT for the detection/monitoring of α-Syn aggregates states. These are summarized here.
Keywords: Amyloid; Chemosensor; Fluorescence; Molecular Probes; Parkinson's disease; α-Synuclein.
Copyright © 2023 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Chemical Information
Medical
Miscellaneous
