Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 1;152(4):939-949.
doi: 10.1093/jn/nxab432.

Sulfated Polysaccharides from Enteromorpha prolifera Attenuate Lipid Metabolism Disorders in Mice with Obesity Induced by a High-Fat Diet via a Pathway Dependent on AMP-Activated Protein Kinase

Affiliations
Free article

Sulfated Polysaccharides from Enteromorpha prolifera Attenuate Lipid Metabolism Disorders in Mice with Obesity Induced by a High-Fat Diet via a Pathway Dependent on AMP-Activated Protein Kinase

Aili Zhao et al. J Nutr. .
Free article

Abstract

Background: Obesity-related metabolic diseases have recently evoked worldwide attention. Studies have demonstrated that Enteromorpha polysaccharide (EP) exerts lipid-lowering effects, but the underlying mechanism remains unclear.

Objectives: We investigated whether EP regulates lipid metabolism disorders in mice with high-fat diet (HFD)-induced obesity via an AMP-activated protein kinase (AMPK)-dependent pathway.

Methods: Six-week-old male C57BL/6J mice (18 ± 2 g) were fed a normal diet (ND; 10% energy from fats) or an HFD (60% energy from fats) for 6 weeks to induce obesity and treated intragastrically with EP (200 mg/kg body weight) or distilled water (10 mL/kg body weight) for 8 weeks. Biochemical indicators, AMPK-dependent pathways, and lipid metabolism-related genes were evaluated to assess the effects of EP on HFD-induced lipid metabolism disorders. The essential role of AMPK in the EP-mediated regulation of lipid metabolism was confirmed using HFD-fed male Ampka2-knockout mice (aged 6 weeks; 17 ± 2 g) treated or not treated with the above-mentioned dose of EP. The data were analyzed by t-tests, 2-factor and 1-way ANOVAs.

Results: Compared to the ND, the HFD resulted in a greater body weight (24.3%), perirenal fat index (2.2-fold), and serum total cholesterol (24.66%) and LDL cholesterol (1.25-fold) concentrations (P < 0.05) and dysregulated the AMPK-dependent pathway and the expression of most lipid metabolism-related genes (P < 0.05). Compared to the HFD, EP treatment resulted in a lower perirenal fat index (31.22%) and LDL cholesterol concentration (23.98%) and partly reversed the dysregulation of the AMPK-dependent pathway and the altered expression of lipid metabolism-related genes (P < 0.05). Ampka2 knockout abolished the above-mentioned effects of EP in obese mice and the EP-mediated effects on the expression of lipid metabolism-related genes (P > 0.05).

Conclusions: These findings suggest that EP can ameliorate lipid metabolism disorders in mice with HFD-induced obesity via an AMPK-dependent pathway.

Keywords: Enteromorpha polysaccharide; AMPKα2; high-fat diet; lipid metabolism disorders; obesity.

PubMed Disclaimer

Publication types