Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Mar 9:15:1142617.
doi: 10.3389/fnagi.2023.1142617. eCollection 2023.

Mechanisms underlying TDP-43 pathology and neurodegeneration: An updated Mini-Review

Affiliations
Review

Mechanisms underlying TDP-43 pathology and neurodegeneration: An updated Mini-Review

Benjamin I Nilaver et al. Front Aging Neurosci. .

Abstract

TAR DNA binding protein 43 kDa (TDP-43) plays an important role in several essential cell functions. However, TDP-43 dysfunction has been implicated in the development of various brain diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). Recent investigations into the individual components of TDP-43 pathology show how broader TDP-43 dysfunction may precede these disease end states, and therefore could help to explain why TDP-43 dysfunction continues to be implicated in a rapidly expanding category of neurodegenerative diseases. The literature reviewed in this article suggests that dysregulation of TDP-43 initiated by some environmental and/or genetic insults can lead to a snowballing dysfunction across the cell, involving impaired gene expression, mRNA stability, as well as the function and coordination of those pathways directly regulated by TDP-43. Furthermore, the hallmarks of TDP-43 pathology, such as hyperphosphorylation and insoluble cytoplasmic accumulation of the protein may actually be artifacts of an upstream impairment in TDP-43's normal function. Overall, the present article summarizes current knowledge regarding TDP-43's normal and pathological cell functions and sheds light on possible mechanisms that underlie its causal role in neurodegeneration.

Keywords: ALS; LATE; TDP-43; autophagy; dementia; phosphorylation.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Schematic overview depicting progressive development of TDP-43 pathology within the brain.

References

    1. Brady O. A., Meng P., Zheng Y., Mao Y., Hu F. (2010). Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. J. Neurochem. 116, 248–259. doi: 10.1111/j.1471-4159.2010.07098.x, PMID: - DOI - PubMed
    1. de Boer E. M., Orie V. K., Williams T., Baker M. R., De Oliveira H. M., Polvikoski T., et al. (2020). TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 92, 86–95. doi: 10.1136/jnnp-2020-322983, PMID: - DOI - PMC - PubMed
    1. Dugger B. N., Dickson D. W. (2017). Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 9:a028035. doi: 10.1101/cshperspect.a028035, PMID: - DOI - PMC - PubMed
    1. Eck R. J., Kraemer B. C., Liachko N. F. (2021). Regulation of TDP-43 phosphorylation in aging and disease. GeroScience 43, 1605–1614. doi: 10.1007/s11357-021-00383-5, PMID: - DOI - PMC - PubMed
    1. Fratta P., Sivakumar P., Humphrey J., Lo K., Ricketts T., Oliveira H., et al. (2018). Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J. 37:e98684. doi: 10.15252/embj.201798684, PMID: - DOI - PMC - PubMed