Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 13;15(15):7023-7031.
doi: 10.1039/d3nr00128h.

In situ growth of lead-free halide perovskites into SiO2 sub-microcapsules toward water-stable photocatalytic CO2 reduction

Affiliations

In situ growth of lead-free halide perovskites into SiO2 sub-microcapsules toward water-stable photocatalytic CO2 reduction

Jie Liu et al. Nanoscale. .

Abstract

Halide perovskites (HPs) are highly susceptible to heat, light, or moisture and are easily decomposed even in an ambient environment, which greatly hinders their practical applications. Herein, an in situ growth strategy is presented for implanting an inorganic lead-free HP, Cs2AgBiBr6, into SiO2 sub-microcapsules to form a Cs2AgBiBr6@SiO2 yolk-shell composite. The SiO2 sub-microcapsule endows Cs2AgBiBr6 with good thermal and light stability, as well as excellent corrosion resistance against polar solvents. Furthermore, when employed as a lead-free perovskite photocatalyst, the composite exhibits a higher visible-light-driven CO2-to-CO rate (271.76 μmol g-1 h-1) and much better stability than Cs2AgBiBr6 in water. The formation of a Cs2AgBiBr6/SiO2 heterostructure using an in situ growth method alleviates water binding on the perovskites, supported by density functional theory calculations, which is the key to an improvement in the stability of the composite. The in situ growth strategy developed here sheds light on the design and development of HP-based materials for applications involving polar solvents.

PubMed Disclaimer

LinkOut - more resources