Optimization of β-Lactam Dosing Regimens in Neonatal Infections: Continuous and Extended Administration versus Intermittent Administration
- PMID: 36972008
- DOI: 10.1007/s40262-023-01230-w
Optimization of β-Lactam Dosing Regimens in Neonatal Infections: Continuous and Extended Administration versus Intermittent Administration
Abstract
Background and objective: In neonates, β-Lactam antibiotics are almost exclusively administered by intermittent infusion. However, continuous or prolonged infusion may be more beneficial because of the time-dependent antibacterial activity. In this pharmacokinetic/pharmacodynamic simulation study, we aimed to compare treatment with continuous, extended and intermittent infusion of β-lactam antibiotics for neonates with infectious diseases.
Methods: We selected population pharmacokinetic models of penicillin G, amoxicillin, flucloxacillin, cefotaxime, ceftazidime and meropenem, and performed a Monte Carlo simulation with 30,000 neonates. Four different dosing regimens were simulated: intermittent infusion in 30 min, prolonged infusion in 4 h, continuous infusion, and continuous infusion with a loading dose. The primary endpoint was 90% probability of target attainment (PTA) for 100% ƒT>MIC during the first 48 h of treatment.
Results: For all antibiotics except cefotaxime, continuous infusion with a loading dose resulted in a higher PTA compared with other dosing regimens. Sufficient exposure (PTA >90%) using continuous infusion with a loading dose was reached for amoxicillin (90.3%), penicillin G (PTA 98.4%), flucloxacillin (PTA 94.3%), cefotaxime (PTA 100%), and ceftazidime (PTA 100%). Independent of dosing regimen, higher meropenem (PTA for continuous infusion with a loading dose of 85.5%) doses might be needed to treat severe infections in neonates. Ceftazidime and cefotaxime dose might be unnecessarily high, as even with dose reductions, a PTA > 90% was retained.
Conclusions: Continuous infusion after a loading dose leads to a higher PTA compared with continuous, intermittent or prolonged infusion, and therefore has the potential to improve treatment with β-lactam antibiotics in neonates.
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
References
-
- Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736-88.
-
- Guilhaumou R, Benaboud S, Bennis Y, Dahyot-Fizelier C, Dailly E, Gandia P, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit Care. 2019;23(1):104. - DOI - PubMed - PMC
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
