Polymorphic phase behavior of platelet-activating factor
- PMID: 3697472
- PMCID: PMC1329506
- DOI: 10.1016/S0006-3495(86)83686-4
Polymorphic phase behavior of platelet-activating factor
Abstract
Vibrational Raman and 31P NMR spectroscopic experiments have been performed as a function of temperature on aqueous dispersions of 1-0-octadecyl-2-acetoyl-sn-glycero-3-phosphocholine, a chemically synthesized platelet-activating factor. In the temperature range of -7 to 30 degrees C, the C(18)/PAF-H2O system is shown, upon heating, to undergo two thermal phase transitions centered at 9.2 degrees and 18.4 degrees C. The low temperature transition, attributed to the interdigitated lamellar gel (II)----gel (I) phase transition, is characterized by the breakdown of large lamellar organizations into small, but aggregated, bilayer vesicles. The high-temperature transition corresponds to the interdigitated lamellar gel (I)----micellar transition. The molecular ordering and packing structure of C(18)/PAF in the two lamellar phases and phase transition regions are described. It appears that the interdigitated lamellar gel (I) phase is unique for C(18)/PAF dispersions when compared with the behavior of other chemically closely related phospholipids in excess water.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
