Use of Next Generation Sequencing to Define the Origin of Primary Myelofibrosis
- PMID: 36980671
- PMCID: PMC10046249
- DOI: 10.3390/cancers15061785
Use of Next Generation Sequencing to Define the Origin of Primary Myelofibrosis
Abstract
Primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm (MPN) characterized by progressive bone marrow sclerosis, extra-medullary hematopoiesis, and possible transformation to acute leukemia. In the last decade, the molecular pathogenesis of the disease has been largely uncovered. Particularly, genetic and genomic studies have provided evidence of deregulated oncogenes in PMF as well as in other MPNs. However, the mechanisms through which transformation to either the myeloid or lymphoid blastic phase remain obscure. Particularly, it is still debated whether the disease has origins in a multi-potent hematopoietic stem cells or instead in a commissioned myeloid progenitor. In this study, we aimed to shed light upon this issue by using next generation sequencing (NGS) to study both myeloid and lymphoid cells as well as matched non-neoplastic DNA of PMF patients. Whole exome sequencing revealed that most somatic mutations were the same between myeloid and lymphoid cells, such findings being confirmed by Sanger sequencing. Particularly, we found 126/146 SNVs to be the e same (including JAK2V617F), indicating that most genetic events likely to contribute to disease pathogenesis occurred in a non-commissioned precursor. In contrast, only 9/27 InDels were similar, suggesting that this type of lesion contributed instead to disease progression, occurring at more differentiated stages, or maybe just represented "passenger" lesions, not contributing at all to disease pathogenesis. In conclusion, we showed for the first time that genetic lesions characteristic of PMF occur at an early stage of hematopoietic stem cell differentiation, this being in line with the possible transformation of the disease in either myeloid or lymphoid acute leukemia.
Keywords: cell of origin; cell sorting; next generation sequencing; primary myelofibrosis; single nucleotide variants; whole exome sequencing.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




References
-
- Khoury J.D., Solary E., Abla O., Akkari Y., Alaggio R., Apperley J.F., Bejar R., Berti E., Busque L., Chan J.K.C., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36:1703–1719. doi: 10.1038/s41375-022-01613-1. - DOI - PMC - PubMed
-
- Beer P.A., Delhommeau F., LeCouédic J.-P., Dawson M.A., Chen E., Bareford D., Kušec R., McMullin M.F., Harrison C.N., Vannucchi A.M., et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:2891–2900. doi: 10.1182/blood-2009-08-236596. - DOI - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources