LhANS-rr1, LhDFR, and LhMYB114 Regulate Anthocyanin Biosynthesis in Flower Buds of Lilium 'Siberia'
- PMID: 36980831
- PMCID: PMC10048704
- DOI: 10.3390/genes14030559
LhANS-rr1, LhDFR, and LhMYB114 Regulate Anthocyanin Biosynthesis in Flower Buds of Lilium 'Siberia'
Abstract
The bulb formation of Lilium is affected by many physiological and biochemical phenomena, including flower bud differentiation, starch and sucrose accumulation, photoperiod, carbon fixation, plant hormone transduction, etc. The transcriptome analysis of flower buds of Lilium hybrid 'Siberia' at different maturity stages showed that floral bud formation is associated with the accumulation of anthocyanins. The results of HPLC-MS showed that cyanidin is the major anthocyanin found in Lilium 'Siberia'. Transcriptome KEGG enrichment analysis and qRT-PCR validation showed that two genes related to flavonoid biosynthesis (LhANS-rr1 and LhDFR) were significantly up-regulated. The functional analysis of differential genes revealed that LhMYB114 was directly related to anthocyanin accumulation among 19 MYB transcription factors. Furthermore, the qRT-PCR results suggested that their expression patterns were very similar at different developmental stages of the lily bulbs. Virus-induced gene silencing (VIGS) revealed that down-regulation of LhANS-rr1, LhDFR, and LhMYB114 could directly lead to a decrease in anthocyanin accumulation, turning the purple phenotype into a white color. Moreover, this is the first report to reveal that LhMYB114 can regulate anthocyanin accumulation at the mature stage of lily bulbs. The accumulation of anthocyanins is an important sign of lily maturity. Therefore, these findings have laid a solid theoretical foundation for further discussion on lily bulb development in the future.
Keywords: Lilium ‘Siberia’; MYB transcription factor; VIGS; anthocyanin; bulb; full-length transcriptomics.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Caltagirone S., Rossi C., Poggi A., Ranelletti F.O., Natali P.G., Brunetti M., Aiello F.B., Piantelli M. Flavonoids Apigenin and Quercetin Inhibit Melanoma Growth and Metastatic Potential. Int. J. Cancer. 2000;87:595–600. doi: 10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO;2-5. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
