Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement
- PMID: 36981520
- PMCID: PMC10048517
- DOI: 10.3390/healthcare11060863
Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement
Abstract
Vision loss can be avoided if diabetic retinopathy (DR) is diagnosed and treated promptly. The main five DR stages are none, moderate, mild, proliferate, and severe. In this study, a deep learning (DL) model is presented that diagnoses all five stages of DR with more accuracy than previous methods. The suggested method presents two scenarios: case 1 with image enhancement using a contrast limited adaptive histogram equalization (CLAHE) filtering algorithm in conjunction with an enhanced super-resolution generative adversarial network (ESRGAN), and case 2 without image enhancement. Augmentation techniques were then performed to generate a balanced dataset utilizing the same parameters for both cases. Using Inception-V3 applied to the Asia Pacific Tele-Ophthalmology Society (APTOS) datasets, the developed model achieved an accuracy of 98.7% for case 1 and 80.87% for case 2, which is greater than existing methods for detecting the five stages of DR. It was demonstrated that using CLAHE and ESRGAN improves a model's performance and learning ability.
Keywords: APTOS; diabetic retinopathy; image enhancement; vision loss.
Conflict of interest statement
The authors declare no conflict of interest.
Figures











Similar articles
-
Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN.Diagnostics (Basel). 2023 Jul 14;13(14):2375. doi: 10.3390/diagnostics13142375. Diagnostics (Basel). 2023. PMID: 37510123 Free PMC article.
-
Enhancing diabetic retinopathy classification using deep learning.Digit Health. 2023 Sep 26;9:20552076231203676. doi: 10.1177/20552076231203676. eCollection 2023 Jan-Dec. Digit Health. 2023. PMID: 37766903 Free PMC article.
-
Deep learning-enhanced diabetic retinopathy image classification.Digit Health. 2023 Aug 13;9:20552076231194942. doi: 10.1177/20552076231194942. eCollection 2023 Jan-Dec. Digit Health. 2023. PMID: 37588156 Free PMC article.
-
CLAHE-CapsNet: Efficient retina optical coherence tomography classification using capsule networks with contrast limited adaptive histogram equalization.PLoS One. 2023 Nov 30;18(11):e0288663. doi: 10.1371/journal.pone.0288663. eCollection 2023. PLoS One. 2023. PMID: 38032915 Free PMC article. Review.
-
Review on diabetic retinopathy with deep learning methods.J Med Imaging (Bellingham). 2021 Nov;8(6):060901. doi: 10.1117/1.JMI.8.6.060901. Epub 2021 Nov 29. J Med Imaging (Bellingham). 2021. PMID: 34859116 Free PMC article. Review.
Cited by
-
Strong versus Weak Data Labeling for Artificial Intelligence Algorithms in the Measurement of Geographic Atrophy.Ophthalmol Sci. 2024 Jan 26;4(5):100477. doi: 10.1016/j.xops.2024.100477. eCollection 2024 Sep-Oct. Ophthalmol Sci. 2024. PMID: 38827491 Free PMC article.
-
Automated high precision PCOS detection through a segment anything model on super resolution ultrasound ovary images.Sci Rep. 2025 May 15;15(1):16832. doi: 10.1038/s41598-025-01744-2. Sci Rep. 2025. PMID: 40369044 Free PMC article.
-
Positive Effect of Super-Resolved Structural Magnetic Resonance Imaging for Mild Cognitive Impairment Detection.Brain Sci. 2024 Apr 14;14(4):381. doi: 10.3390/brainsci14040381. Brain Sci. 2024. PMID: 38672031 Free PMC article.
-
YOLOv5-FPN: A Robust Framework for Multi-Sized Cell Counting in Fluorescence Images.Diagnostics (Basel). 2023 Jul 5;13(13):2280. doi: 10.3390/diagnostics13132280. Diagnostics (Basel). 2023. PMID: 37443674 Free PMC article.
-
Enhancement of Diabetic Retinopathy Prognostication Using Deep Learning, CLAHE, and ESRGAN.Diagnostics (Basel). 2023 Jul 14;13(14):2375. doi: 10.3390/diagnostics13142375. Diagnostics (Basel). 2023. PMID: 37510123 Free PMC article.
References
-
- Atwany M.Z., Sahyoun A.H., Yaqub M. Deep learning techniques for diabetic retinopathy classification: A survey. IEEE Access. 2022;10:28642–28655. doi: 10.1109/ACCESS.2022.3157632. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources