Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Apr;23(2):177-83.
doi: 10.1016/0011-2240(86)90009-x.

Fluorescence anisotropy of kidney lipids and membranes of a hibernating mammal

Fluorescence anisotropy of kidney lipids and membranes of a hibernating mammal

D Montaudon et al. Cryobiology. 1986 Apr.

Abstract

The fluorescence anisotropy of lipids and membranes isolated from kidneys of European hamsters (Cricetus cricetus L.) has been estimated using 1,6-diphenyl-1,3,5-hexatriene as a probe. We have compared in this study the results obtained for two critical periods for a hibernator: winter (torpid state), and summer (active state). The differences were of very low magnitude. A slight increase in anisotropy was noticed in the kidney lipids and microsomal membrane preparations from torpid animals. In contrast, a small decrease in anisotropy was observed in the microsomal lipid extracts of torpid animals. A difference in triglyceride content of winter and summer total kidney lipids was detected, as well as a difference in microsomal protein content between winter and summer membrane preparations. It is hypothesized that the latter observations may explain why the behavior of kidney total lipids and microsomal preparations were different from that presented by kidney microsomal lipids in respect to fluorescence anisotropy. Therefore, only a little, if any, homeoviscous adaptation is exhibited by kidney membranes during hibernation of this mammal.

PubMed Disclaimer

LinkOut - more resources