Measurement of chemical penetration in skin using Stimulated Raman scattering microscopy and multivariate curve resolution - alternating least squares
- PMID: 36989692
- DOI: 10.1016/j.saa.2023.122639
Measurement of chemical penetration in skin using Stimulated Raman scattering microscopy and multivariate curve resolution - alternating least squares
Abstract
The mechanistic understanding of skin penetration underpins the design, efficacy and risk assessment of many high-value products including functional personal care products, topical and transdermal drugs. Stimulated Raman scattering (SRS) microscopy, a label free chemical imaging tool, combines molecular spectroscopy with submicron spatial information to map the distribution of chemicals as they penetrate the skin. However, the quantification of penetration is hampered by significant interference from Raman signals of skin constituents. This study reports a method for disentangling exogeneous contributions and measuring their permeation profile through human skin combining SRS measurements with chemometrics. We investigated the spectral decomposition capability of multivariate curve resolution - alternating least squares (MCR-ALS) using hyperspectral SRS images of skin dosed with 4-cyanophenol. By performing MCR-ALS on the fingerprint region spectral data, the distribution of 4-cyanophenol in skin was estimated in an attempt to quantify the amount permeated at different depths. The reconstructed distribution was compared with the experimental mapping of CN, a strong vibrational peak in 4-cyanophenol where the skin is spectroscopically silent. The similarity between MCR-ALS resolved and experimental distribution in skin dosed for 4 h was 0.79 which improved to 0.91 for skin dosed for 1 h. The correlation was observed to be lower for deeper layers of skin where SRS signal intensity is low which is an indication of low sensitivity of SRS. This work is the first demonstration, to the best of our knowledge, of combining SRS imaging technique with spectral unmixing methods for direct observation and mapping of the chemical penetration and distribution in biological tissues.
Keywords: Chemometrics; Multivariate analysis; Spectral Unmixing; Stimulated Raman Scattering; Topical delivery.
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
