Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Mar 15:2023.03.13.532152.
doi: 10.1101/2023.03.13.532152.

Targeted engagement of β-catenin-Ikaros complexes in refractory B-cell malignancies

Targeted engagement of β-catenin-Ikaros complexes in refractory B-cell malignancies

Kadriye Nehir Cosgun et al. bioRxiv. .

Abstract

In most cell types, nuclear β-catenin functions as prominent oncogenic driver and pairs with TCF7-family factors for transcriptional activation of MYC. Surprisingly, B-lymphoid malignancies not only lacked expression and activating lesions of β-catenin but critically depended on GSK3β for effective β-catenin degradation. Our interactome studies in B-lymphoid tumors revealed that β-catenin formed repressive complexes with lymphoid-specific Ikaros factors at the expense of TCF7. Instead of MYC-activation, β-catenin was essential to enable Ikaros-mediated recruitment of nucleosome remodeling and deacetylation (NuRD) complexes for transcriptional repression of MYC. To leverage this previously unrecognized vulnerability of B-cell-specific repressive β-catenin-Ikaros-complexes in refractory B-cell malignancies, we examined GSK3β small molecule inhibitors to subvert β-catenin degradation. Clinically approved GSK3β-inhibitors that achieved favorable safety prof les at micromolar concentrations in clinical trials for neurological disorders and solid tumors were effective at low nanomolar concentrations in B-cell malignancies, induced massive accumulation of β-catenin, repression of MYC and acute cell death. Preclinical in vivo treatment experiments in patient-derived xenografts validated small molecule GSK3β-inhibitors for targeted engagement of lymphoid-specific β-catenin-Ikaros complexes as a novel strategy to overcome conventional mechanisms of drug-resistance in refractory malignancies.

Highlights: Unlike other cell lineages, B-cells express nuclear β-catenin protein at low baseline levels and depend on GSK3β for its degradation.In B-cells, β-catenin forms unique complexes with lymphoid-specific Ikaros factors and is required for Ikaros-mediated tumor suppression and assembly of repressive NuRD complexes. CRISPR-based knockin mutation of a single Ikaros-binding motif in a lymphoid MYC superenhancer region reversed β-catenin-dependent Myc repression and induction of cell death. The discovery of GSK3β-dependent degradation of β-catenin as unique B-lymphoid vulnerability provides a rationale to repurpose clinically approved GSK3β-inhibitors for the treatment of refractory B-cell malignancies.

Graphical abstract: Abundant nuclear β-cateninβ-catenin pairs with TCF7 factors for transcriptional activation of MYCB-cells rely on efficient degradation of β-catenin by GSK3βB-cell-specific expression of Ikaros factors Unique vulnerability in B-cell tumors: GSK3β-inhibitors induce nuclear accumulation of β-catenin.β-catenin pairs with B-cell-specific Ikaros factors for transcriptional repression of MYC.

PubMed Disclaimer

Publication types

LinkOut - more resources