Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 18;12(4):494-502.
doi: 10.1021/acsmacrolett.3c00036. Epub 2023 Apr 1.

Visible Light-Based 4D-Bioprinted Tissue Scaffold

Affiliations

Visible Light-Based 4D-Bioprinted Tissue Scaffold

Sriram Bharath Gugulothu et al. ACS Macro Lett. .

Abstract

Emerging four-dimensional (4D) printing strategies offer improved alternatives to conventional three-dimensional (3D)-bioprinted structures for better compliance and simplicity of application for tissue engineering. Little is reported on simple 3D-bioprinted structures prepared by digital light processing (DLP) that can change shape-to-complex constructs (4D bioprinting) in response to cell-friendly stimuli, such as hydration. In the current research work, a bioink consisting of a blend of gelatin methacryloyl (GelMA) and poly(ethylene glycol) dimethacrylate (PEGDM) with a photoinitiator and a photoabsorber was developed and printed by DLP-based 3D bioprinting operated with visible light (405 nm). The 3D-bioprinted constructs combined with differential cross-linking due to photoabsorber-induced light attenuation were leveraged to realize structural anisotropy, which led to rapid shape deformation (as low as ≈30 min) upon hydration. The sheet thickness influenced the degree of curvature, whereas the incorporation of angled strands provided control of the deformation of the 3D-printed structure. The 4D-bioprinted gels supported the viability and proliferation of cells. Overall, this study introduces a cytocompatible bioink formulation for 4D bioprinting to yield shape-morphing, cell-laden hydrogels for tissue engineering.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources