Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1986 Apr;60(4):1327-32.
doi: 10.1152/jappl.1986.60.4.1327.

Validation of tetrapolar bioelectrical impedance method to assess human body composition

Comparative Study

Validation of tetrapolar bioelectrical impedance method to assess human body composition

H C Lukaski et al. J Appl Physiol (1985). 1986 Apr.

Abstract

This study was conducted to validate the relationship between bioelectrical conductance (ht2/R) and densitometrically determined fat-free mass, and to compare the prediction errors of body fatness derived from the tetrapolar impedance method and skinfold thicknesses, relative to hydrodensitometry. One-hundred and fourteen male and female subjects, aged 18-50 yr, with a wide range of fat-free mass (34-96 kg) and percent body fat (4-41%), participated. For males, densitometrically determined fat-free mass was correlated highly (r = 0.979), with fat-free mass predicted from tetrapolar conductance measures using an equation developed for males in a previous study. For females, the correlation between measured fat-free mass and values predicted from the combined (previous and present male data) equation for men also was strong (r = 0.954). The regression coefficients in the male and female regression equations were not significantly different. Relative to hydrodensitometry, the impedance method had a lower predictive error or standard error of the estimates of estimating body fatness than did a standard anthropometric technique (2.7 vs. 3.9%). Therefore this study establishes the validity and reliability of the tetrapolar impedance method for use in assessment of body composition in healthy humans.

PubMed Disclaimer

Publication types

LinkOut - more resources