Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 May;86(5):421-438.
doi: 10.1016/j.jinf.2023.03.020. Epub 2023 Mar 30.

Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas

Affiliations

Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas

Yi Wang et al. J Infect. 2023 May.

Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is currently the deadliest infectious disease in human that can evolve to severe forms. A comprehensive immune landscape for Mtb infection is critical for achieving TB cure, especially for severe TB patients. We performed single-cell RNA transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing of 213,358 cells from 27 samples, including 6 healthy donors and 21 active TB patients with varying severity (6 mild, 6 moderate and 9 severe cases). Two published profiles of latent TB infection were integrated for the analysis. We observed an obviously elevated proportion of inflammatory immune cells (e.g., monocytes), as well as a markedly decreased abundance of various lymphocytes (e.g., NK and γδT cells) in severe patients, revealing that lymphopenia might be a prominent feature of severe disease. Further analyses indicated that significant activation of cell apoptosis pathways, including perforin/granzyme-, TNF-, FAS- and XAF1-induced apoptosis, as well as cell migration pathways might confer this reduction. The immune landscape in severe patients was characterized by widespread immune exhaustion in Th1, CD8+T and NK cells as well as high cytotoxic state in CD8+T and NK cells. We also discovered that myeloid cells in severe TB patients may involve in the immune paralysis. Systemic upregulation of S100A12 and TNFSF13B, mainly by monocytes in the peripheral blood, may contribute to the inflammatory cytokine storms in severe patients. Our data offered a rich resource for understanding of TB immunopathogenesis and designing effective therapeutic strategies for TB, especially for severe patients.

Keywords: Cytokine storm; Immunological responses; Mycobacterium tuberculosis; ScRNA-seq; Severe patients; Tuberculosis.

PubMed Disclaimer

Conflict of interest statement

Competing interests The authors declare no competing interests.

Publication types

LinkOut - more resources