Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May 5;261(13):6132-6.

Maize phosphoenolpyruvate carboxylase. Cloning and characterization of mRNAs encoding isozymic forms

  • PMID: 3700388
Free article

Maize phosphoenolpyruvate carboxylase. Cloning and characterization of mRNAs encoding isozymic forms

M H Harpster et al. J Biol Chem. .
Free article

Abstract

The isozymic forms of maize phosphoenolpyruvate carboxylase (P-enolpyruvate carboxylase) involved in photosynthetic CO2 fixation were shown by protein gel blot analysis to consist of 100-kDa subunits. The nonautotrophic isoform found in roots is comprised of 96-kDa subunits and is about 50-100-fold less prevalent. Further analysis of P-enolpyruvate carboxylase isoforms made use of cloned cDNA probes. Two cDNA clones were isolated from a library constructed from maize leaf poly(A) RNA. The largest clone was complementary to about 25% of P-enolpyruvate carboxylase mRNA, which is 3.4 kilobases in length. The quantity of P-enolpyruvate carboxylase mRNA in green, mature leaf tissue was estimated to be 0.20% of poly(A) RNA, whereas P-enolpyruvate carboxylase mRNA in roots was about 100-fold less prevalent. We used thermal denaturation of a P-enolpyruvate carboxylase cDNA probe hybridized to RNA gel blots to estimate the degree of sequence difference between mRNAs encoding different P-enolpyruvate carboxylase isoforms. There appear to be at least two prevalent P-enolpyruvate carboxylase mRNAs in green leaves which are significantly different in sequence, as are P-enolpyruvate carboxylase mRNAs in roots and shoots. The hybridization pattern of maize genomic DNA Southern blots indicates that P-enolpyruvate carboxylase is encoded by a small gene family.

PubMed Disclaimer

Publication types

LinkOut - more resources