Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 4;16(779):eabo4974.
doi: 10.1126/scisignal.abo4974. Epub 2023 Apr 4.

WNT stimulation induces dynamic conformational changes in the Frizzled-Dishevelled interaction

Affiliations

WNT stimulation induces dynamic conformational changes in the Frizzled-Dishevelled interaction

Carl-Fredrik Bowin et al. Sci Signal. .

Abstract

Frizzleds (FZDs) are G protein-coupled receptors (GPCRs) that bind to WNT family ligands. FZDs signal through multiple effector proteins, including Dishevelled (DVL), which acts as a hub for several downstream signaling pathways. To understand how WNT binding to FZD stimulates intracellular signaling and influences downstream pathway selectivity, we investigated the dynamic changes in the FZD5-DVL2 interaction elicited by WNT-3A and WNT-5A. Ligand-induced changes in bioluminescence resonance energy transfer (BRET) between FZD5 and DVL2 or the isolated FZD-binding DEP domain of DVL2 revealed a composite response consisting of both DVL2 recruitment and conformational dynamics in the FZD5-DVL2 complex. The combination of different BRET paradigms enabled us to identify ligand-dependent conformational dynamics in the FZD5-DVL2 complex and distinguish them from ligand-induced recruitment of DVL2 or DEP to FZD5. The observed agonist-induced conformational changes at the receptor-transducer interface suggest that extracellular agonist and intracellular transducers cooperate through transmembrane allosteric interaction with FZDs in a ternary complex reminiscent of that of classical GPCRs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources