Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 May:198:107674.
doi: 10.1016/j.plaphy.2023.107674. Epub 2023 Mar 30.

Regulation of thermodynamics and kinetics of silica nucleation during the silicification process in higher plants

Affiliations
Review

Regulation of thermodynamics and kinetics of silica nucleation during the silicification process in higher plants

Huachun Sheng et al. Plant Physiol Biochem. 2023 May.

Abstract

The formation mechanism of SiO2 aggregates is controversial because two contrasting hypotheses are often proposed to explain plant silicification. In this review, we summarize the physicochemical fundamentals of amorphous silica nucleation and discuss how plants regulate the process of silicification by influencing the thermodynamics and kinetics of silica nucleation. At silicification positions, plants overcome the thermodynamic barrier by establishing the supersaturation of the H4SiO4 solution and reducing the interfacial free energy. Among the thermodynamic-drivers, the establishment of supersaturation of H4SiO4 solution mainly depends on the expression of Si transporters for H4SiO4 supply, evapotranspiration for concentrating Si, and the other solutes in H4SiO4 solution for influencing the dissolution equilibrium of SiO2; while the interfacial free energy was reduced seemingly by the overexpression Na+/H+ antiporter SOS1 in high NaCl-stressed rice. Moreover, some kinetic-drivers, such as silicification-related proteins (Slp1 and PRP1) and new cell wall components, are actively expressed or synthesized by plants to interact with silicic acid, thereby reducing the kinetic barrier. According to classical nucleation theory, when the thermodynamic barrier is overcome, the super-saturated silicic acid solution (such as H4SiO4 in xylem sap) does not necessarily have to precipitate, just has the potential ability to precipitation. Thus, based on the mediators of SiO2 deposition at the thermodynamic-driven stage, it is difficult to evaluate whether the process of plant silicification is active or passive. We conclude that the characteristics of kinetic-drivers determine the mechanism of plant silicification.

Keywords: Cell wall components; Drivers; Kinetic barrier; Plant silicification; Silica nucleation; Thermodynamic barrier.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources