Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep;70(9):999-1015.
doi: 10.1109/TUFFC.2023.3239320. Epub 2023 Aug 29.

Toward Estimating MRI-Ultrasound Registration Error in Image-Guided Neurosurgery

Toward Estimating MRI-Ultrasound Registration Error in Image-Guided Neurosurgery

Joshua Bierbrier et al. IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Sep.

Abstract

Image-guided neurosurgery allows surgeons to view their tools in relation to preoperatively acquired patient images and models. To continue using neuronavigation systems throughout operations, image registration between preoperative images [typically magnetic resonance imaging (MRI)] and intraoperative images (e.g., ultrasound) is common to account for brain shift (deformations of the brain during surgery). We implemented a method to estimate MRI-ultrasound registration errors, with the goal of enabling surgeons to quantitatively assess the performance of linear or nonlinear registrations. To the best of our knowledge, this is the first dense error estimating algorithm applied to multimodal image registrations. The algorithm is based on a previously proposed sliding-window convolutional neural network that operates on a voxelwise basis. To create training data where the true registration error is known, simulated ultrasound images were created from preoperative MRI images and artificially deformed. The model was evaluated on artificially deformed simulated ultrasound data and real ultrasound data with manually annotated landmark points. The model achieved a mean absolute error (MAE) of 0.977 ± 0.988 mm and a correlation of 0.8 ± 0.062 on the simulated ultrasound data, and an MAE of 2.24 ± 1.89 mm and a correlation of 0.246 on the real ultrasound data. We discuss concrete areas to improve the results on real ultrasound data. Our progress lays the foundation for future developments and ultimately implementation of clinical neuronavigation systems.

PubMed Disclaimer

Publication types

Grants and funding

LinkOut - more resources