Structure- and Data-Driven Protein Engineering of Transaminases for Improving Activity and Stereoselectivity
- PMID: 37022103
- DOI: 10.1002/anie.202301660
Structure- and Data-Driven Protein Engineering of Transaminases for Improving Activity and Stereoselectivity
Abstract
Amine transaminases (ATAs) are powerful biocatalysts for the stereoselective synthesis of chiral amines. Machine learning provides a promising approach for protein engineering, but activity prediction models for ATAs remain elusive due to the difficulty of obtaining high-quality training data. Thus, we first created variants of the ATA from Ruegeria sp. (3FCR) with improved catalytic activity (up to 2000-fold) as well as reversed stereoselectivity by a structure-dependent rational design and collected a high-quality dataset in this process. Subsequently, we designed a modified one-hot code to describe steric and electronic effects of substrates and residues within ATAs. Finally, we built a gradient boosting regression tree predictor for catalytic activity and stereoselectivity, and applied this for the data-driven design of optimized variants which then showed improved activity (up to 3-fold compared to the best variants previously identified). We also demonstrated that the model can predict the catalytic activity for ATA variants of another origin by retraining with a small set of additional data.
Keywords: Biocatalysis; Catalytic Activity; Machine Learning; Stereoselectivity; Transaminases.
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Similar articles
-
Protein-engineering of an amine transaminase for the stereoselective synthesis of a pharmaceutically relevant bicyclic amine.Org Biomol Chem. 2016 Nov 2;14(43):10249-10254. doi: 10.1039/c6ob02139e. Org Biomol Chem. 2016. PMID: 27739550
-
Amine transaminases in chiral amines synthesis: recent advances and challenges.World J Microbiol Biotechnol. 2017 Dec 18;34(1):13. doi: 10.1007/s11274-017-2395-2. World J Microbiol Biotechnol. 2017. PMID: 29255954 Review.
-
Shifting the pH Optima of (R)-Selective Transaminases by Protein Engineering.Int J Mol Sci. 2022 Dec 5;23(23):15347. doi: 10.3390/ijms232315347. Int J Mol Sci. 2022. PMID: 36499674 Free PMC article.
-
Expanding the Toolbox of R-Selective Amine Transaminases by Identification and Characterization of New Members.Chembiochem. 2021 Apr 6;22(7):1232-1242. doi: 10.1002/cbic.202000692. Epub 2020 Dec 28. Chembiochem. 2021. PMID: 33242357 Free PMC article.
-
Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.Curr Opin Chem Biol. 2014 Apr;19:180-92. doi: 10.1016/j.cbpa.2014.02.021. Epub 2014 Apr 12. Curr Opin Chem Biol. 2014. PMID: 24721252 Review.
Cited by
-
Guide to serial synchrotron crystallography.Curr Res Struct Biol. 2024 Feb 6;7:100131. doi: 10.1016/j.crstbi.2024.100131. eCollection 2024. Curr Res Struct Biol. 2024. PMID: 38371325 Free PMC article. Review.
-
Application of Directed Evolution and Machine Learning to Enhance the Diastereoselectivity of Ketoreductase for Dihydrotetrabenazine Synthesis.JACS Au. 2024 Jun 26;4(7):2547-2556. doi: 10.1021/jacsau.4c00284. eCollection 2024 Jul 22. JACS Au. 2024. PMID: 39055154 Free PMC article.
-
Understanding the stability of a plastic-degrading Rieske iron oxidoreductase system.Protein Sci. 2024 Jun;33(6):e4997. doi: 10.1002/pro.4997. Protein Sci. 2024. PMID: 38723110 Free PMC article.
-
Accelerating Biocatalysis Discovery with Machine Learning: A Paradigm Shift in Enzyme Engineering, Discovery, and Design.ACS Catal. 2023 Oct 26;13(21):14454-14469. doi: 10.1021/acscatal.3c03417. eCollection 2023 Nov 3. ACS Catal. 2023. PMID: 37942268 Free PMC article. Review.
-
Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity.Nat Commun. 2024 Oct 10;15(1):8778. doi: 10.1038/s41467-024-53048-0. Nat Commun. 2024. PMID: 39389964 Free PMC article.
References
-
- T. C. Nugent, Chiral amine synthesis: methods, developments and applications, 1st ed., Wiley-VCH, Weinheim, 2010, p. 523.
-
- None
-
- E. Alfonzo, A. Das, F. H. Arnold, Curr. Opin. Green Sustainable Chem. 2022, 38, 100701;
-
- W. Zawodny, S. L. Montgomery, Catalysts 2022, 12, 595;
-
- S. Wu, R. Snajdrova, J. C. Moore, K. Baldenius, U. T. Bornscheuer, Angew. Chem. Int. Ed. 2021, 60, 88-119;
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials