exFINDER: identify external communication signals using single-cell transcriptomics data
- PMID: 37026478
- PMCID: PMC10250247
- DOI: 10.1093/nar/gkad262
exFINDER: identify external communication signals using single-cell transcriptomics data
Abstract
Cells make decisions through their communication with other cells and receiving signals from their environment. Using single-cell transcriptomics, computational tools have been developed to infer cell-cell communication through ligands and receptors. However, the existing methods only deal with signals sent by the measured cells in the data, the received signals from the external system are missing in the inference. Here, we present exFINDER, a method that identifies such external signals received by the cells in the single-cell transcriptomics datasets by utilizing the prior knowledge of signaling pathways. In particular, exFINDER can uncover external signals that activate the given target genes, infer the external signal-target signaling network (exSigNet), and perform quantitative analysis on exSigNets. The applications of exFINDER to scRNA-seq datasets from different species demonstrate the accuracy and robustness of identifying external signals, revealing critical transition-related signaling activities, inferring critical external signals and targets, clustering signal-target paths, and evaluating relevant biological events. Overall, exFINDER can be applied to scRNA-seq data to reveal the external signal-associated activities and maybe novel cells that send such signals.
© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
Figures






Update of
-
exFINDER: identify external communication signals using single-cell transcriptomics data.bioRxiv [Preprint]. 2023 Mar 27:2023.03.24.533888. doi: 10.1101/2023.03.24.533888. bioRxiv. 2023. Update in: Nucleic Acids Res. 2023 Jun 9;51(10):e58. doi: 10.1093/nar/gkad262. PMID: 37034624 Free PMC article. Updated. Preprint.
Similar articles
-
exFINDER: identify external communication signals using single-cell transcriptomics data.bioRxiv [Preprint]. 2023 Mar 27:2023.03.24.533888. doi: 10.1101/2023.03.24.533888. bioRxiv. 2023. Update in: Nucleic Acids Res. 2023 Jun 9;51(10):e58. doi: 10.1093/nar/gkad262. PMID: 37034624 Free PMC article. Updated. Preprint.
-
Entropy-based inference of transition states and cellular trajectory for single-cell transcriptomics.Brief Bioinform. 2022 Jul 18;23(4):bbac225. doi: 10.1093/bib/bbac225. Brief Bioinform. 2022. PMID: 35696651
-
DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.Bioinformatics. 2018 Jan 1;34(1):139-146. doi: 10.1093/bioinformatics/btx490. Bioinformatics. 2018. PMID: 29036318 Free PMC article.
-
Machine learning and statistical methods for clustering single-cell RNA-sequencing data.Brief Bioinform. 2020 Jul 15;21(4):1209-1223. doi: 10.1093/bib/bbz063. Brief Bioinform. 2020. PMID: 31243426 Review.
-
Critical downstream analysis steps for single-cell RNA sequencing data.Brief Bioinform. 2021 Sep 2;22(5):bbab105. doi: 10.1093/bib/bbab105. Brief Bioinform. 2021. PMID: 33822873 Review.
Cited by
-
Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data.Nat Protoc. 2025 Jun;20(6):1439-1467. doi: 10.1038/s41596-024-01121-9. Epub 2025 Mar 4. Nat Protoc. 2025. PMID: 40038548 Review.
-
Dissecting multilayer cell-cell communications with signaling feedback loops from spatial transcriptomics data.Genome Res. 2025 Jun 2;35(6):1400-1414. doi: 10.1101/gr.279857.124. Genome Res. 2025. PMID: 40262896
-
Reconstructing growth and dynamic trajectories from single-cell transcriptomics data.Nat Mach Intell. 2024;6(1):25-39. doi: 10.1038/s42256-023-00763-w. Epub 2023 Nov 30. Nat Mach Intell. 2024. PMID: 38274364 Free PMC article.
-
CellCommuNet: an atlas of cell-cell communication networks from single-cell RNA sequencing of human and mouse tissues in normal and disease states.Nucleic Acids Res. 2024 Jan 5;52(D1):D597-D606. doi: 10.1093/nar/gkad906. Nucleic Acids Res. 2024. PMID: 37850657 Free PMC article.
-
New Insights and Implications of Cell-Cell Interactions in Developmental Biology.Int J Mol Sci. 2025 Apr 23;26(9):3997. doi: 10.3390/ijms26093997. Int J Mol Sci. 2025. PMID: 40362237 Free PMC article. Review.