Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov;53(11):7406-7416.
doi: 10.1109/TCYB.2023.3249154. Epub 2023 Oct 17.

Adaptive Neural Network Event-Triggered Output-Feedback Containment Control for Nonlinear MASs With Input Quantization

Adaptive Neural Network Event-Triggered Output-Feedback Containment Control for Nonlinear MASs With Input Quantization

Haodong Zhou et al. IEEE Trans Cybern. 2023 Nov.

Abstract

This article investigates the adaptive neural network (NN) event-triggered containment control problem for a class of nonlinear multiagent systems (MASs). Since the considered nonlinear MASs contain unknown nonlinear dynamics, immeasurable states, and quantized input signals, the NNs are adopted to model unknown agents, and an NN state observer is established by using the intermittent output signal. Subsequently, a novel event-triggered mechanism consisting of both the sensor-to-controller and controller-to-actuator channels are established. By decomposing quantized input signals into the sum of two bounded nonlinear functions and based on the adaptive backstepping control and first-order filter design theories, an adaptive NN event-triggered output-feedback containment control scheme is formulated. It is proved that the controlled system is semi-globally uniformly ultimately bounded (SGUUB) and the followers are within a convex hull formed by the leaders. Finally, a simulation example is given to validate the effectiveness of the presented NN containment control scheme.

PubMed Disclaimer

LinkOut - more resources