Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul 1:311:120771.
doi: 10.1016/j.carbpol.2023.120771. Epub 2023 Mar 3.

Construction of efficient Ni-FeLDH@MWCNT@Cellulose acetate floatable microbeads for Cr(VI) removal: Performance and mechanism

Affiliations

Construction of efficient Ni-FeLDH@MWCNT@Cellulose acetate floatable microbeads for Cr(VI) removal: Performance and mechanism

Ahmed M Omer et al. Carbohydr Polym. .

Abstract

Water pollution is an aggravating dilemma that is extending around the world, threatening human survival. Strikingly, the notorious heavy metals like hexavalent chromium ions (Cr6+) cause environmental problems raising awareness of the essentials for finding feasible solutions. For this purpose, the self-floating Ni-FeLDH@MWCNT@CA microbeads were prepared for removing Cr6+. The morphological, thermal, and composition characteristics of Ni-FeLDH@MWCNT@CA microbeads were analyzed using XRD, FTIR, TGA, SEM, XPS, and zeta potential. Notably, the adsorption aptitude of Cr6+ was enhanced by raising the MWCNTs proportion to 5 wt% in microbeads. The Cr6+ adsorption onto Ni-FeLDH@MWCNT@CA fitted Langmuir and Freundlich isotherm models with qm of 384.62 mg/g at pH 3 and 298 K. The adsorption process was described kinetically by the pseudo-2nd order model. More importantly, the adsorption of Cr6+ onto Ni-FeLDH@MWCNT@CA occurred via electrostatic interactions, inner/outer sphere complexations, ion exchange, and reduction mechanisms. Besides, the cycling test showed the remarkable reusability of Ni-FeLDH@MWCNT@CA floatable microbeads for five subsequent cycles. The self-floating Ni-FeLDH@MWCNT@CA microbeads in this work provide essential support for the potential applications for the remediation of heavy metals-containing wastewater.

Keywords: CA, MWCNTs; Cr(6+) adsorption; Floating; LDH; Mechanism.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources