Multi-Stimuli-Responsive and Mechano-Actuated Biomimetic Membrane Nanopores Self-Assembled from DNA
- PMID: 37029712
- DOI: 10.1002/adma.202300589
Multi-Stimuli-Responsive and Mechano-Actuated Biomimetic Membrane Nanopores Self-Assembled from DNA
Abstract
In bioinspired design, biological templates are mimicked in structure and function by highly controllable synthetic means. Of interest are static barrel-like nanopores that enable molecular transport across membranes for use in biosensing, sequencing, and biotechnology. However, biological ion channels offer additional functions such as dynamic changes of the entire pore shape between open and closed states, and triggering of dynamic processes with biochemical and physical stimuli. To better capture this complexity, this report presents multi-stimuli and mechano-responsive biomimetic nanopores which are created with DNA nanotechnology. The nanopores switch between open and closed states, whereby specific binding of DNA and protein molecules as stimuli locks the pores in the open state. Furthermore, the physical stimulus of high transmembrane voltage switches the pores into a closed state. In addition, the pore diameters are larger and more tunable than those of natural templates. These multi-stimuli-responsive and mechanically actuated nanopores mimic several aspects of complex biological channels yet offer easier control over pore size, shape and stimulus response. The designer pores are expected to be applied in biosensing and synthetic biology.
Keywords: DNA nanotechnology; membranes; molecular recognition; nanomechanics; nanopore sensing; nanopores; nanostructures; self-assembly.
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Similar articles
-
Short-Term Memory Impairment.2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2024 Jun 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 31424720 Free Books & Documents.
-
Aerolysin Nanopore Electrochemistry.Acc Chem Res. 2025 Feb 18;58(4):517-528. doi: 10.1021/acs.accounts.4c00630. Epub 2025 Jan 28. Acc Chem Res. 2025. PMID: 39874057 Review.
-
Programming Ion Gating and Dynamic Response of Nanopores with Responsive Tetrahedral DNA Nanostructures.Anal Chem. 2025 Aug 19;97(32):17462-17471. doi: 10.1021/acs.analchem.5c02206. Epub 2025 Aug 5. Anal Chem. 2025. PMID: 40762995
-
Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes.ACS Appl Mater Interfaces. 2021 Jun 30;13(25):29926-29935. doi: 10.1021/acsami.1c06243. Epub 2021 Jun 16. ACS Appl Mater Interfaces. 2021. PMID: 34133124
-
Comparison of cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease.Cochrane Database Syst Rev. 2001;(3):CD003234. doi: 10.1002/14651858.CD003234. Cochrane Database Syst Rev. 2001. Update in: Cochrane Database Syst Rev. 2005 Jul 20;(3):CD003234. doi: 10.1002/14651858.CD003234.pub2. PMID: 11687058 Updated.
Cited by
-
Engineering DNA nanopores: from structural evolution to sensing and transport.Mater Today Bio. 2025 Jul 26;34:102137. doi: 10.1016/j.mtbio.2025.102137. eCollection 2025 Oct. Mater Today Bio. 2025. PMID: 40761509 Free PMC article. Review.
-
Specific ATP Detection Using Molecule-Responsive DNA Nanopores.Small. 2025 Jul;21(29):e2409293. doi: 10.1002/smll.202409293. Epub 2025 May 2. Small. 2025. PMID: 40317998 Free PMC article.
-
A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport.Nat Commun. 2024 Aug 22;15(1):7210. doi: 10.1038/s41467-024-51630-0. Nat Commun. 2024. PMID: 39174536 Free PMC article.
-
Molecular Recognition in Confined Space Elucidated with DNA Nanopores and Single-Molecule Force Microscopy.Nano Lett. 2023 May 24;23(10):4439-4447. doi: 10.1021/acs.nanolett.3c00743. Epub 2023 May 11. Nano Lett. 2023. PMID: 37166380 Free PMC article.
References
-
- C. Lee, J. Guo, W. Zeng, S. Kim, J. She, C. Cang, D. Ren, Y. Jiang, Nature 2017, 547, 472.
-
- G. E. Flynn, J. P. Johnson, W. N. Zagotta, Nat. Rev. Neurosci. 2001, 2, 643.
-
- A. J. R. Plested, Nat. Struct. Mol. Biol. 2016, 23, 494.
-
- I. Gushchin, I. Melnikov, V. Polovinkin, A. Ishchenko, A. Yuzhakova, P. Buslaev, G. Bourenkov, S. Grudinin, E. Round, T. Balandin, V. Borshchevskiy, D. Willbold, G. Leonard, G. Büldt, A. Popov, V. Gordeliy, Science 2017, 356, 6342.
-
- G. Goodwin, S. B. McMahon, Nat. Rev. Neurosci. 2021, 22, 263.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources