Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1986 Feb;11(2):217-30.
doi: 10.1007/BF00967970.

Reduced labeling of brain phosphatidylinositol, triacylglycerols, and diacylglycerols by [1-14C]arachidonic acid after electroconvulsive shock: potentiation of the effect by adrenergic drugs and comparison with palmitic acid labeling

Comparative Study

Reduced labeling of brain phosphatidylinositol, triacylglycerols, and diacylglycerols by [1-14C]arachidonic acid after electroconvulsive shock: potentiation of the effect by adrenergic drugs and comparison with palmitic acid labeling

M F Pediconi et al. Neurochem Res. 1986 Feb.

Abstract

The effect of electroconvulsive shock on the labeling of phospholipids and neutral lipids in mice brains was examined after intracerebral injection of [1-14C] arachidonic acid or [1-14C]palmitic acid. Electroconvulsive shock reduced greatly the removal of radiolabeled arachidonic acid from the free fatty acid pool. At the same time, the incorporation of arachidonic acid was partially inhibited in triacylglycerol, diacylglycerol, and phosphatidylinositol, whereas the incorporation of [1-14C]palmitic acid was not affected. Pretreatment with desipramine and pargyline potentiated the lipid effect of electroconvulsive shock in neutral glycerides. These electroconvulsive shock-induced changes reflect alterations in the metabolism of intracerebrally injected arachidonic acid, but not of similarly injected palmitic acid. From the available data whether decreased ATP, enzyme inhibition or other factors are involved cannot be ascertained. Moreover, the electroconvulsive shock-enhanced endogenous free arachidonic acid may possibly dilute the injected radiolabeled fatty acid, thus decreasing its availability for arachidonoyl-coenzyme A synthesis. Hence, a partial inhibition of the activation-acylation of these fatty acids, primarily arachidonic acid, also may be involved in the seizure-induced accumulation of free fatty acids in the brain.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Brain Res. 1982 Mar 11;235(2):327-34 - PubMed
    1. J Neurochem. 1971 Aug;18(8):1379-85 - PubMed
    1. Proc Natl Acad Sci U S A. 1982 Jan;79(1):193-7 - PubMed
    1. Lipids. 1970 May;5(5):494-6 - PubMed
    1. Adv Exp Med Biol. 1976;72 :317-35 - PubMed

Publication types