Changes in local and network brain activity after stereotactic thermocoagulation in patients with drug-resistant epilepsy
- PMID: 37032394
- DOI: 10.1111/epi.17613
Changes in local and network brain activity after stereotactic thermocoagulation in patients with drug-resistant epilepsy
Abstract
Objective: Stereoelectroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) aims to reduce seizure frequency by modifying epileptogenic networks through local thermocoagulative lesions. Although RF-TC is hypothesized to functionally modify brain networks, reports of changes in functional connectivity (FC) following the procedure are missing. We evaluated, by means of SEEG recordings, whether variation in brain activity after RF-TC is related to clinical outcome.
Methods: Interictal SEEG recordings from 33 patients with drug-resistant epilepsy (DRE) were analyzed. Therapeutic response was defined as a >50% reduction in seizure frequency for at least 1 month following RF-TC. Local (power spectral density [PSD]) and FC changes were evaluated in 3-min segments recorded shortly before (baseline), shortly after, and 15 min after RF-TC. The PSD and FC strength values after thermocoagulation were compared with baseline as well as between the responder and nonresponder groups.
Results: In responders, we found a significant reduction in PSD after RF-TC in channels that were thermocoagulated for all frequency bands (p = .007 for broad, delta and theta, p <.001 for alpha and beta bands). However, we did not observe such PSD decrease in nonresponders. At the network level, nonresponders displayed a significant FC increase in all frequency bands except theta (broad, delta, beta band: p <.001; alpha band: p <.01), although responders showed a significant FC decrease in delta (p <.001) and alpha bands (p <.05). Nonresponders showed stronger FC changes with respect to responders exclusively in TC channels (broad, alpha, theta, beta: p >.05; delta: p = .001).
Significance: Thermocoagulation induces both local and network-related (FC) changes in electrical brain activity of patients with DRE lasting for at least 15 min. This study demonstrates that the observed short-term modifications in brain network and local activity significantly differ between responders and nonresponders and opens new perspectives for studying the longer-lasting FC changes after RF-TC.
Keywords: SEEG; brain lesion; brain stimulation; functional connectivity; intracranial signal analysis.
© 2023 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.
References
REFERENCES
-
- Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, et al. Prevalence and incidence of epilepsy. Neurol Neurol. 2017;88:296-303.
-
- Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51(6):1069-77.
-
- Guenot M, Isnard J, Ryvlin P, Fischer C, Ostrowsky K, Mauguiere F, et al. Neurophysiological monitoring for epilepsy surgery: the Talairach SEEG method. StereoElectroEncephaloGraphy. Indications, results, complications and therapeutic applications in a series of 100 consecutive cases. Stereotact Funct Neurosurg. 2001;77(1-4):29-32.
-
- Bourdillon P, Isnard J, Catenoix H, Montavont A, Rheims S, Ryvlin P, et al. Stereo electroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) in drug-resistant focal epilepsy: results from a 10-year experience. Epilepsia. 2017;58(1):85-93.
-
- Cossu M, Fuschillo D, Casaceli G, Pelliccia V, Castana L, Mai R, et al. Stereoelectroencephalography-guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases. J Neurosurg. 2015;123(6):1358-67.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources