Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep-Oct;14(5):e1650.
doi: 10.1002/wcs.1650. Epub 2023 Apr 9.

Causal inference in cognitive neuroscience

Affiliations

Causal inference in cognitive neuroscience

David Danks et al. Wiley Interdiscip Rev Cogn Sci. 2023 Sep-Oct.

Abstract

Causal inference is a key step in many research endeavors in cognitive science and neuroscience, and particularly cognitive neuroscience. Statistical knowledge is sufficient for prediction and diagnosis, but causal knowledge is required for action and intervention. Most statistics courses and textbooks emphasize the difficulty of causal inference, focusing on the maxim that "correlation does not mean causation": there can be multiple causal possibilities, often many of them, consistent with given observed statistics. This paper focuses instead on the conceptual issues and assumptions that confront causal and other kinds of inference, primarily focusing on cognitive neuroscience. We connect inference methods with goals and challenges, and provide concrete guidance about how to select appropriate tools for the scientific task. This article is categorized under: Psychology > Theory and Methods Philosophy > Foundations of Cognitive Science.

Keywords: causal inference; cognitive neuroscience; methodology.

PubMed Disclaimer

Similar articles

Cited by

References

FURTHER READING
    1. Calafato, M. S., Thygesen, J. H., Ranlund, S., Zartaloudi, E., Cahn, W., Crespo-Facorro, B., Diez-Revuelta, A., Di Forti, M., Risk, G., Hall, M. H., Iyegbe, C., Jablensky, A., Kahn, R., Kalaydjieva, L., Kravariti, E., Lin, K., McDonald, C., McIntosh, A. M., McQuillin, A., … Bramon, E. (2018). Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders. The British Journal of Psychiatry, 213(3), 535-541.
    1. Plis, S., Danks, D., Freeman, C., & Calhoun, V. (2015). Rate-agnostic (causal) structure learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems 28 (pp. 3303-3311). The NIPS Foundation.
    1. Ruderfer, D. M., Ripke, S., McQuillin, A., Boocock, J., Stahl, E. A., Pavlides, J. M. W., Mullins, N., Charney, A. W., Ori, A. P., Loohuis, L. M. O., Domenici, E., Di Florio, A., Papiol, S., Kalman, J. L., Trubetskoy, V., Adolfsson, R., Agartz, I., Agerbo, E., Akil, H., … Psychosis Endophenotypes International Consortium, Wellcome Trust Case-Control Consortium. (2018). Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell, 173(7), 1705-1715.
REFERENCES
    1. Argyelan, M., Ikuta, T., DeRosse, P., Braga, R. J., Burdick, K. E., John, M., Kingsley, P. B., Malhotra, A. K., & Szeszko, P. R. (2014). Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophrenia Bulletin, 40(1), 100-110.
    1. Ashby, F. G., Maddox, W. T., & Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimensional scaling or the similarity-choice model. Psychological Science, 5, 144-151.
    1. Bassett, D. S., & Bullmore, E. D. (2006). Small-world brain networks. The Neuroscientist, 12, 512-523.
    1. Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20, 353-364.
    1. Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5-13.

LinkOut - more resources