Causal inference in cognitive neuroscience
- PMID: 37032464
- DOI: 10.1002/wcs.1650
Causal inference in cognitive neuroscience
Abstract
Causal inference is a key step in many research endeavors in cognitive science and neuroscience, and particularly cognitive neuroscience. Statistical knowledge is sufficient for prediction and diagnosis, but causal knowledge is required for action and intervention. Most statistics courses and textbooks emphasize the difficulty of causal inference, focusing on the maxim that "correlation does not mean causation": there can be multiple causal possibilities, often many of them, consistent with given observed statistics. This paper focuses instead on the conceptual issues and assumptions that confront causal and other kinds of inference, primarily focusing on cognitive neuroscience. We connect inference methods with goals and challenges, and provide concrete guidance about how to select appropriate tools for the scientific task. This article is categorized under: Psychology > Theory and Methods Philosophy > Foundations of Cognitive Science.
Keywords: causal inference; cognitive neuroscience; methodology.
© 2023 The Authors. WIREs Cognitive Science published by Wiley Periodicals LLC.
Similar articles
-
Enhancing causal inference in population-based neuroimaging data in children and adolescents.Dev Cogn Neurosci. 2024 Dec;70:101465. doi: 10.1016/j.dcn.2024.101465. Epub 2024 Oct 19. Dev Cogn Neurosci. 2024. PMID: 39447451 Free PMC article. Review.
-
Causality in Cognitive Neuroscience: Concepts, Challenges, and Distributional Robustness.J Cogn Neurosci. 2021 Feb;33(2):226-247. doi: 10.1162/jocn_a_01623. Epub 2020 Aug 19. J Cogn Neurosci. 2021. PMID: 32812827 Review.
-
[Psychiatry without mind?].Encephale. 2021 Dec;47(6):605-612. doi: 10.1016/j.encep.2021.05.006. Epub 2021 Sep 24. Encephale. 2021. PMID: 34579938 French.
-
Towards an interdisciplinary "science of the mind": A call for enhanced collaboration between philosophy and neuroscience.Eur J Neurosci. 2024 Sep;60(5):4771-4784. doi: 10.1111/ejn.16451. Epub 2024 Jul 2. Eur J Neurosci. 2024. PMID: 38956706
-
Causation in neuroscience: keeping mechanism meaningful.Nat Rev Neurosci. 2024 Feb;25(2):81-90. doi: 10.1038/s41583-023-00778-7. Epub 2024 Jan 11. Nat Rev Neurosci. 2024. PMID: 38212413 Review.
Cited by
-
Enhancing causal inference in population-based neuroimaging data in children and adolescents.Dev Cogn Neurosci. 2024 Dec;70:101465. doi: 10.1016/j.dcn.2024.101465. Epub 2024 Oct 19. Dev Cogn Neurosci. 2024. PMID: 39447451 Free PMC article. Review.
-
The subcortical brain regions influence the cortical areas during resting-state: an fMRI study.Front Hum Neurosci. 2024 Jun 26;18:1363125. doi: 10.3389/fnhum.2024.1363125. eCollection 2024. Front Hum Neurosci. 2024. PMID: 39055533 Free PMC article.
-
Causality Analysis with Information Geometry: A Comparison.Entropy (Basel). 2023 May 16;25(5):806. doi: 10.3390/e25050806. Entropy (Basel). 2023. PMID: 37238561 Free PMC article.
-
Engineering Virtuous health habits using Emotion and Neurocognition: Flexibility for Lifestyle Optimization and Weight management (EVEN FLOW).Front Aging Neurosci. 2023 Nov 22;15:1256430. doi: 10.3389/fnagi.2023.1256430. eCollection 2023. Front Aging Neurosci. 2023. PMID: 38076541 Free PMC article. Review.
References
FURTHER READING
-
- Calafato, M. S., Thygesen, J. H., Ranlund, S., Zartaloudi, E., Cahn, W., Crespo-Facorro, B., Diez-Revuelta, A., Di Forti, M., Risk, G., Hall, M. H., Iyegbe, C., Jablensky, A., Kahn, R., Kalaydjieva, L., Kravariti, E., Lin, K., McDonald, C., McIntosh, A. M., McQuillin, A., … Bramon, E. (2018). Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders. The British Journal of Psychiatry, 213(3), 535-541.
-
- Plis, S., Danks, D., Freeman, C., & Calhoun, V. (2015). Rate-agnostic (causal) structure learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems 28 (pp. 3303-3311). The NIPS Foundation.
-
- Ruderfer, D. M., Ripke, S., McQuillin, A., Boocock, J., Stahl, E. A., Pavlides, J. M. W., Mullins, N., Charney, A. W., Ori, A. P., Loohuis, L. M. O., Domenici, E., Di Florio, A., Papiol, S., Kalman, J. L., Trubetskoy, V., Adolfsson, R., Agartz, I., Agerbo, E., Akil, H., … Psychosis Endophenotypes International Consortium, Wellcome Trust Case-Control Consortium. (2018). Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell, 173(7), 1705-1715.
REFERENCES
-
- Argyelan, M., Ikuta, T., DeRosse, P., Braga, R. J., Burdick, K. E., John, M., Kingsley, P. B., Malhotra, A. K., & Szeszko, P. R. (2014). Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophrenia Bulletin, 40(1), 100-110.
-
- Ashby, F. G., Maddox, W. T., & Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimensional scaling or the similarity-choice model. Psychological Science, 5, 144-151.
-
- Bassett, D. S., & Bullmore, E. D. (2006). Small-world brain networks. The Neuroscientist, 12, 512-523.
-
- Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20, 353-364.
-
- Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5-13.
MeSH terms
LinkOut - more resources
Full Text Sources