Causal inference in cognitive neuroscience
- PMID: 37032464
- DOI: 10.1002/wcs.1650
Causal inference in cognitive neuroscience
Abstract
Causal inference is a key step in many research endeavors in cognitive science and neuroscience, and particularly cognitive neuroscience. Statistical knowledge is sufficient for prediction and diagnosis, but causal knowledge is required for action and intervention. Most statistics courses and textbooks emphasize the difficulty of causal inference, focusing on the maxim that "correlation does not mean causation": there can be multiple causal possibilities, often many of them, consistent with given observed statistics. This paper focuses instead on the conceptual issues and assumptions that confront causal and other kinds of inference, primarily focusing on cognitive neuroscience. We connect inference methods with goals and challenges, and provide concrete guidance about how to select appropriate tools for the scientific task. This article is categorized under: Psychology > Theory and Methods Philosophy > Foundations of Cognitive Science.
Keywords: causal inference; cognitive neuroscience; methodology.
© 2023 The Authors. WIREs Cognitive Science published by Wiley Periodicals LLC.
References
FURTHER READING
-
- Calafato, M. S., Thygesen, J. H., Ranlund, S., Zartaloudi, E., Cahn, W., Crespo-Facorro, B., Diez-Revuelta, A., Di Forti, M., Risk, G., Hall, M. H., Iyegbe, C., Jablensky, A., Kahn, R., Kalaydjieva, L., Kravariti, E., Lin, K., McDonald, C., McIntosh, A. M., McQuillin, A., … Bramon, E. (2018). Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders. The British Journal of Psychiatry, 213(3), 535-541.
-
- Plis, S., Danks, D., Freeman, C., & Calhoun, V. (2015). Rate-agnostic (causal) structure learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems 28 (pp. 3303-3311). The NIPS Foundation.
-
- Ruderfer, D. M., Ripke, S., McQuillin, A., Boocock, J., Stahl, E. A., Pavlides, J. M. W., Mullins, N., Charney, A. W., Ori, A. P., Loohuis, L. M. O., Domenici, E., Di Florio, A., Papiol, S., Kalman, J. L., Trubetskoy, V., Adolfsson, R., Agartz, I., Agerbo, E., Akil, H., … Psychosis Endophenotypes International Consortium, Wellcome Trust Case-Control Consortium. (2018). Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell, 173(7), 1705-1715.
REFERENCES
-
- Argyelan, M., Ikuta, T., DeRosse, P., Braga, R. J., Burdick, K. E., John, M., Kingsley, P. B., Malhotra, A. K., & Szeszko, P. R. (2014). Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophrenia Bulletin, 40(1), 100-110.
-
- Ashby, F. G., Maddox, W. T., & Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimensional scaling or the similarity-choice model. Psychological Science, 5, 144-151.
-
- Bassett, D. S., & Bullmore, E. D. (2006). Small-world brain networks. The Neuroscientist, 12, 512-523.
-
- Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20, 353-364.
-
- Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5-13.
MeSH terms
LinkOut - more resources
Full Text Sources
