Ultrafast Deposition of NiFe Metal-organic Framework Catalysts Boosts BiVO4 Photoanode for Efficient Solar Water Splitting
- PMID: 37032632
- DOI: 10.1002/asia.202300197
Ultrafast Deposition of NiFe Metal-organic Framework Catalysts Boosts BiVO4 Photoanode for Efficient Solar Water Splitting
Abstract
The severe photocorrosion of BiVO4 limits its application in solar energy conversion in the long-term photoelectrochemical stability test. Herein, we synthesized a Fe@Ni-MOFs/BiVO4 photoanode by a simple ultrasonic method and ultrafast deposition, which avoids the problems of damaging the surface structure of photoelectrode. The Fe@Ni-MOFs/BiVO4 shows a photocurrent density of 4.89 mA cm-2 at 1.23 VRHE with an onset potential of 0.25 VRHE under one sun illumination. Importantly, a stability over 30 h at 0.7 VRHE can be obtained, which is so far the best stability character for MOFs-based cocatalysts decorated on BiVO4 . During operation, Fe@Ni-MOFs transforms into a homogeneous and active hydroxide layer covering the surface, which exposes more active sites for OER reactions. This work demonstrates a simple strategy for MOFs co-catalysts to obtain fast hole transfer capability and reduce carrier recombination, thereby improving PEC performance.
Keywords: BiVO4 photoanode; Fe@Ni-MOFs; oxygen evolution; photostability; reconstruction structure.
© 2023 Wiley-VCH GmbH.
Similar articles
-
NiFe MOF modified BiVO4 photoanode with strong π-π conjugation enhances built-in electric field for boasting photoelectrochemical water oxidation.J Colloid Interface Sci. 2024 Jan 15;654(Pt B):1492-1503. doi: 10.1016/j.jcis.2023.10.144. Epub 2023 Oct 30. J Colloid Interface Sci. 2024. PMID: 37923693
-
Activity and Stability Boosting of an Oxygen-Vacancy-Rich BiVO4 Photoanode by NiFe-MOFs Thin Layer for Water Oxidation.Angew Chem Int Ed Engl. 2021 Jan 18;60(3):1433-1440. doi: 10.1002/anie.202012550. Epub 2020 Nov 17. Angew Chem Int Ed Engl. 2021. PMID: 33006403
-
Unveiling the effect of the structural transformation of CoZn-MOF on BiVO4 photoanode for efficient photoelectrochemical water oxidation.J Colloid Interface Sci. 2024 Jun 15;664:838-847. doi: 10.1016/j.jcis.2024.03.038. Epub 2024 Mar 6. J Colloid Interface Sci. 2024. PMID: 38493649
-
Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.Small. 2018 Jun;14(23):e1704179. doi: 10.1002/smll.201704179. Epub 2018 Mar 25. Small. 2018. PMID: 29575653 Review.
-
Cocatalysts-Photoanode Interface in Photoelectrochemical Water Splitting: Understanding and Insights.Small. 2024 Jan;20(1):e2304807. doi: 10.1002/smll.202304807. Epub 2023 Aug 31. Small. 2024. PMID: 37653598 Review.
References
-
- P. Peerakiatkhajohn, J.-H. Yun, H, Chen, M. Lyu, T. Butburee, L. Wang, Adv. Mater. 2016, 28, 6405-6410.
-
- S. Feng, T. Wang, B. Liu, C. Hu, L. Li, Z.-J. Zhao, J. Gong, Angew. Chem. Int. Ed. 2020, 132, 2060-2064.
-
- Y. Park, K. J. McDonald, K. S. Choi, Chem. Soc. Rev. 2013, 42, 2321-2337.
-
- H. S. Han, S. Shin, D. H. Kim, I. J. Park, J. S. Kim, P.-S. Huang, J−K. Lee, I. S. Cho, X. Zheng, Energy Environ. Sci. 2018, 11, 1299-1306.
-
- X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, J. Gong, J. Am. Chem. Soc. 2015, 137, 8356-8359.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources