Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Mar 31:2023.03.31.23287839.
doi: 10.1101/2023.03.31.23287839.

Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications

Ken Suzuki  1   2   3 Konstantinos Hatzikotoulas  4 Lorraine Southam  4 Henry J Taylor  5   6   7 Xianyong Yin  8   9 Kim M Lorenz  10   11   12 Ravi Mandla  13   14 Alicia Huerta-Chagoya  13   14   15 Nigel W Rayner  4 Ozvan Bocher  4 Ana Luiza de S V Arruda  4 Kyuto Sonehara  3   16   17   18 Shinichi Namba  3 Simon S K Lee  19 Michael H Preuss  19 Lauren E Petty  20 Philip Schroeder  13   14 Brett Vanderwerff  8 Mart Kals  21 Fiona Bragg  22   23 Kuang Lin  22 Xiuqing Guo  24 Weihua Zhang  25   26 Jie Yao  24 Young Jin Kim  27 Mariaelisa Graff  28 Fumihiko Takeuchi  29 Jana Nano  30 Amel Lamri  31   32 Masahiro Nakatochi  33 Sanghoon Moon  27 Robert A Scott  34 James P Cook  35 Jung-Jin Lee  36 Ian Pan  37 Daniel Taliun  8 Esteban J Parra  38 Jin-Fang Chai  39 Lawrence F Bielak  40 Yasuharu Tabara  41 Yang Hai  24 Gudmar Thorleifsson  42 Niels Grarup  43 Tamar Sofer  44   45   46 Matthias Wuttke  47 Chloé Sarnowski  48 Christian Gieger  30   49   50 Darryl Nousome  51 Stella Trompet  52   53 Soo-Heon Kwak  54 Jirong Long  55 Meng Sun  56 Lin Tong  57 Wei-Min Chen  58 Suraj S Nongmaithem  59 Raymond Noordam  53 Victor J Y Lim  39 Claudia H T Tam  60   61 Yoonjung Yoonie Joo  62   63   64 Chien-Hsiun Chen  65 Laura M Raffield  66 Bram Peter Prins  67 Aude Nicolas  68 Lisa R Yanek  69 Guanjie Chen  70 Jennifer A Brody  71 Edmond Kabagambe  55   72 Ping An  73 Anny H Xiang  74 Hyeok Sun Choi  75 Brian E Cade  45   76 Jingyi Tan  24 K Alaine Broadaway  66 Alice Williamson  34   77 Zoha Kamali  78   79 Jinrui Cui  80 Linda S Adair  81 Adebowale Adeyemo  70 Carlos A Aguilar-Salinas  82 Tarunveer S Ahluwalia  83   84 Sonia S Anand  31   32   85 Alain Bertoni  86 Jette Bork-Jensen  43 Ivan Brandslund  87   88 Thomas A Buchanan  89 Charles F Burant  90 Adam S Butterworth  6   7   91   92   93 Mickaël Canouil  94   95 Juliana C N Chan  60   61   96   97 Li-Ching Chang  65 Miao-Li Chee  98 Ji Chen  99   100 Shyh-Huei Chen  101 Yuan-Tsong Chen  65 Zhengming Chen  22   23 Lee-Ming Chuang  102   103 Mary Cushman  104 John Danesh  6   7   67   91   92   93 Swapan K Das  105 H Janaka de Silva  106 George Dedoussis  107 Latchezar Dimitrov  108 Ayo P Doumatey  70 Shufa Du  81   109 Qing Duan  66 Kai-Uwe Eckardt  110   111 Leslie S Emery  112 Daniel S Evans  113 Michele K Evans  114 Krista Fischer  21   115 James S Floyd  71 Ian Ford  116 Oscar H Franco  117 Timothy M Frayling  118 Barry I Freedman  119 Pauline Genter  120 Hertzel C Gerstein  31   32   85 Vilmantas Giedraitis  121 Clicerio González-Villalpando  122 Maria Elena González-Villalpando  122 Penny Gordon-Larsen  81   109 Myron Gross  123 Lindsay A Guare  124 Sophie Hackinger  67 Sohee Han  27 Andrew T Hattersley  125 Christian Herder  49   126   127 Momoko Horikoshi  128 Annie-Green Howard  109   129 Willa Hsueh  130 Mengna Huang  37   131 Wei Huang  132 Yi-Jen Hung  133   134 Mi Yeong Hwang  135 Chii-Min Hwu  136   137 Sahoko Ichihara  138 Mohammad Arfan Ikram  117 Martin Ingelsson  121 Md Tariqul Islam  139 Masato Isono  29 Hye-Mi Jang  135 Farzana Jasmine  57 Guozhi Jiang  60   61 Jost B Jonas  140 Torben Jørgensen  141   142   143 Fouad R Kandeel  144 Anuradhani Kasturiratne  145 Tomohiro Katsuya  146   147 Varinderpal Kaur  14 Takahisa Kawaguchi  41 Jacob M Keaton  5   55   108 Abel N Kho  148   149 Chiea-Chuen Khor  150 Muhammad G Kibriya  57 Duk-Hwan Kim  151 Florian Kronenberg  152 Johanna Kuusisto  153 Kristi Läll  21 Leslie A Lange  154 Kyung Min Lee  155   156 Myung-Shik Lee  157   158 Nanette R Lee  159 Aaron Leong  160   161 Liming Li  162   163 Yun Li  66 Ruifang Li-Gao  164 Symen Lithgart  117 Cecilia M Lindgren  165   166   167 Allan Linneberg  141   168 Ching-Ti Liu  169 Jianjun Liu  150   170 Adam E Locke  171   172   173 Tin Louie  112 Jian'an Luan  34 Andrea O Luk  60   61 Xi Luo  174 Jun Lv  162   163 Julie A Lynch  155   156 Valeriya Lyssenko  175   176 Shiro Maeda  128   177   178 Vasiliki Mamakou  179 Sohail Rafik Mansuri  59 Koichi Matsuda  180 Thomas Meitinger  181   182   183 Andres Metspalu  21 Huan Mo  5 Andrew D Morris  184 Jerry L Nadler  185 Michael A Nalls  68   186   187 Uma Nayak  58 Ioanna Ntalla  188 Yukinori Okada  3   16   18   189 Lorena Orozco  190 Sanjay R Patel  191 Snehal Patil  8 Pei Pei  163 Mark A Pereira  192 Annette Peters  30   49   183   193 Fraser J Pirie  194 Hannah G Polikowsky  20 Bianca Porneala  161 Gauri Prasad  195   196 Laura J Rasmussen-Torvik  197 Alexander P Reiner  198 Michael Roden  49   126   127 Rebecca Rohde  28 Katheryn Roll  24 Charumathi Sabanayagam  98   199   200 Kevin Sandow  24 Alagu Sankareswaran  59 Naveed Sattar  201 Sebastian Schönherr  152 Mohammad Shahriar  57 Botong Shen  114 Jinxiu Shi  132 Dong Mun Shin  135 Nobuhiro Shojima  2 Jennifer A Smith  40   202 Wing Yee So  60   97 Alena Stančáková  153 Valgerdur Steinthorsdottir  42 Adrienne M Stilp  112 Konstantin Strauch  203   204   205 Kent D Taylor  24 Barbara Thorand  30   49 Unnur Thorsteinsdottir  42   206 Brian Tomlinson  60   207 Tam C Tran  5 Fuu-Jen Tsai  208 Jaakko Tuomilehto  209   210   211   212 Teresa Tusie-Luna  213   214 Miriam S Udler  13   14   160 Adan Valladares-Salgado  215 Rob M van Dam  39   170 Jan B van Klinken  216   217   218 Rohit Varma  219 Niels Wacher-Rodarte  220 Eleanor Wheeler  34 Ananda R Wickremasinghe  145 Ko Willems van Dijk  216   217   221 Daniel R Witte  222   223 Chittaranjan S Yajnik  224 Ken Yamamoto  225 Kenichi Yamamoto  3   189   226 Kyungheon Yoon  135 Canqing Yu  162   163 Jian-Min Yuan  227   228 Salim Yusuf  31   32   85 Matthew Zawistowski  8 Liang Zhang  98 Wei Zheng  55 VA Million Veteran ProgramAMED GRIFIN Diabetes Initiative JapanBiobank Japan ProjectPenn Medicine BioBankRegeneron Genetics CentereMERGE ConsortiumInternational Consortium for Blood Pressure (ICBP)Meta-Analyses of Glucose and Insulin-Related Traits Consortium (MAGIC)Leslie J Raffel  229 Michiya Igase  230 Eli Ipp  120 Susan Redline  45   76   231 Yoon Shin Cho  75 Lars Lind  232 Michael A Province  73 Myriam Fornage  233 Craig L Hanis  234 Erik Ingelsson  235   236 Alan B Zonderman  114 Bruce M Psaty  71   237   238 Ya-Xing Wang  239 Charles N Rotimi  70 Diane M Becker  69 Fumihiko Matsuda  41 Yongmei Liu  86   240 Mitsuhiro Yokota  241 Sharon L R Kardia  40 Patricia A Peyser  40 James S Pankow  192 James C Engert  242   243 Amélie Bonnefond  94   95   244 Philippe Froguel  94   95   244 James G Wilson  245 Wayne H H Sheu  134   137   246 Jer-Yuarn Wu  65 M Geoffrey Hayes  63   247   248 Ronald C W Ma  60   61   96   97 Tien-Yin Wong  98   199   200 Dennis O Mook-Kanamori  164 Tiinamaija Tuomi  249   250   251   252 Giriraj R Chandak  59 Francis S Collins  5 Dwaipayan Bharadwaj  253 Guillaume Paré  32   254 Michèle M Sale  58   255 Habibul Ahsan  57 Ayesha A Motala  194 Xiao-Ou Shu  55 Kyong-Soo Park  54   256 J Wouter Jukema  52   257 Miguel Cruz  215 Yii-Der Ida Chen  24 Stephen S Rich  258 Roberta McKean-Cowdin  51 Harald Grallert  30   49   259 Ching-Yu Cheng  98   199   200 Mohsen Ghanbari  117 E-Shyong Tai  39   170   260 Josee Dupuis  169   261 Norihiro Kato  29 Markku Laakso  153 Anna Köttgen  47 Woon-Puay Koh  262   263 Donald W Bowden  108   264   265 Colin N A Palmer  266 Jaspal S Kooner  26   267   268   269 Charles Kooperberg  198 Simin Liu  37   131   270 Kari E North  28 Danish Saleheen  271   272   273 Torben Hansen  43 Oluf Pedersen  43 Nicholas J Wareham  184 Juyoung Lee  135 Bong-Jo Kim  135 Iona Y Millwood  22   23 Robin G Walters  22   23 Kari Stefansson  42   206 Mark O Goodarzi  80 Karen L Mohlke  66 Claudia Langenberg  34   274   275 Christopher A Haiman  276 Ruth J F Loos  19   43   277 Jose C Florez  13   14   160 Daniel J Rader  12   278   279   280 Marylyn D Ritchie  12   281   282 Sebastian Zöllner  8   283 Reedik Mägi  21 Joshua C Denny  5   284 Toshimasa Yamauchi  2 Takashi Kadowaki  2   285 John C Chambers  25   26   267   286 Maggie C Y Ng  108   265   287 Xueling Sim  39 Jennifer E Below  20 Philip S Tsao  235   288   289 Kyong-Mi Chang  10   290 Mark I McCarthy  165   291   292   293 James B Meigs  13   160   161 Anubha Mahajan  165   291   293 Cassandra N Spracklen  294 Josep M Mercader  13   14   76 Michael Boehnke  8 Jerome I Rotter  24 Marijana Vujkovic  10   290   295 Benjamin F Voight  10   11   12   279 Andrew P Morris  1   4   21 Eleftheria Zeggini  4   296
Affiliations

Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications

Ken Suzuki et al. medRxiv. .

Abstract

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

PubMed Disclaimer

Conflict of interest statement

R.A.S. is now an employee of GlaxoSmithKline. G.T. is an employee of deCODE genetics/Amgen Inc. A.S.B. reports institutional grants from AstraZeneca, Bayer, Biogen, BioMarin, Bioverativ, Novartis, Regeneron and Sanofi. J.Danesh serves on scientific advisory boards for AstraZeneca, Novartis, and UK Biobank, and has received multiple grants from academic, charitable and industry sources outside of the submitted work. L.S.E. is now an employee of Bristol Myers Squibb. J.S.F. has consulted for Shionogi Inc. T.M.F. has consulted for Sanofi, Boehringer Ingelheim, and received funding from GlaxoSmithKline. H.C.G. holds the McMaster-Sanofi Population Health Institute Chair in Diabetes Research and Care; reports research grants from Eli Lilly, AstraZeneca, Merck, Novo Nordisk and Sanofi; honoraria for speaking from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Novo Nordisk, DKSH, Zuellig, Roche, and Sanofi; and consulting fees from Abbott, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck, Novo Nordisk, Pfizer, Sanofi, Kowa and Hanmi.lth Institute Chair in Diabetes Research and Care; reports research grants from Eli Lilly, AstraZeneca, Merck, Novo Nordisk and Sanofi; honoraria for speaking from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Novo Nordisk, and Sanofi; and consulting fees from Abbott, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck, Novo Nordisk, Janssen, Sanofi, and Kowa. M.Ingelsson is a paid consultant to BioArctic AB. R.L.-G. is a part-time consultant of Metabolon Inc. A.E.L. is now an employee of Regeneron Genetics Center LLC and holds shares in Regeneron Pharmaceuticals. M.A.N. currently serves on the scientific advisory board for Clover Therapeutics and is an advisor to Neuron23 Inc. S.R.P. has received grant funding from Bayer Pharmaceuticals, Philips Respironics and Respicardia. N.Sattar has consulted for or been on speakers bureau for Abbott, Amgen, Astrazeneca, Boehringer Ingelheim, Eli Lilly, Hanmi, Novartis, Novo Nordisk, Sanofi and Pfizer and has received grant funding from Astrazeneca, Boehringer Ingelheim, Novartis and Roche Diagnostics. V.S. is now an employee of deCODE genetics/Amgen Inc. A.M.S. receives funding from Seven Bridges Genomics to develop tools for the NHLBI BioData Catalyst consortium. U.T. is an employee of deCODE genetics/Amgen Inc. E.Ingelsson is now an employee of GlaxoSmithKline. B.M.P. serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. R.C.W.M. reports research funding from AstraZeneca, Bayer, Novo Nordisk, Pfizer, Tricida Inc. and Sanofi, and has consulted for or received speakers fees from AstraZeneca, Bayer, Boehringer Ingelheim, all of which have been donated to the Chinese University of Hong Kong to support diabetes research. D.O.M.-K. is a part-time clinical research consultant for Metabolon Inc. S.Liu reports consulting payments and honoraria or promises of the same for scientific presentations or reviews at numerous venues, including but not limited to Barilla, by-Health Inc, Ausa Pharmed Co.LTD, Fred Hutchinson Cancer Center, Harvard University, University of Buffalo, Guangdong General Hospital and Academy of Medical Sciences, Consulting member for Novo Nordisk, Inc; member of the Data Safety and Monitoring Board for a trial of pulmonary hypertension in diabetes patients at Massachusetts General Hospital; receives royalties from UpToDate; receives an honorarium from the American Society for Nutrition for his duties as Associate Editor. K.Stefansson is an employee of deCODE genetics/Amgen Inc. M.I.M. has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda; and is now an employee of Genentech and a holder of Roche stock. J.B.M. is an Academic Associate for Quest Diagnostics R&D. A.Mahajan is an employee of Genentech, and a holder of Roche stock.

Figures

Figure 1.
Figure 1.. Heatmap of associations of 37 cardiometabolic phenotypes with eight mechanistic clusters of index SNVs for T2D association signals.
Each column corresponds to a cluster. Each row corresponds to a cardiometabolic phenotype. The “temperature” of each cell represents the Z-score (aligned to the T2D risk allele) of association of the phenotype with index SNVs assigned to the cluster. *Phenotype is adjusted for body mass index.
Figure 2.
Figure 2.. Heatmap of cluster-specific enrichments of T2D associations for cell type-specific regions of open chromatin derived from single-cell ATAC-seq peaks in adult and foetal tissue.
Each column represents a mechanistic cluster. Each row represents a cell type that was significantly enriched (P<0.00023, Bonferroni correction for 222 cell types) for T2D associations in at least one cluster (indicated by an asterisk). The temperature of each cell defines the magnitude of the log-fold enrichment. The liver/lipid metabolism cluster is not presented because it includes only three T2D association signals and the regression model did not converge.
Figure 3.
Figure 3.. Associations of the overall GRS and cluster-specific partitioned GRS with five T2D-related vascular outcomes in up to 137,559 individuals from multiple ancestry groups.
Each of the panels summarise the associations of the overall GRS and each cluster-specific component of the partitioned GRS with coronary artery disease (CAD), peripheral artery disease (PAD), ischemic stroke (IS), end-stage diabetic nephropathy (ESDN), and proliferative diabetic retinopathy (PDR). The height of each bar corresponds to the log-odds ratio (beta) per standard deviation of the GRS, and the grey bar shows the 95% confidence interval. Analyses of T2D-related macrovascular complications (CAD, PAD, and IS) were undertaken in all individuals, with adjustment for T2D status. Analysis of microvascular complications were undertaken in individuals with T2D only. *P<0.05, nominal association. **P<0.0063, Bonferroni correction for eight clusters.

References

    1. International Diabetes Federation. IDF Diabetes Atlas. 10th edn., Brussels, Belgium: (2021). https://diabetesatlas.org/.
    1. McCarthy M. I. Painting a new picture of personalised medicine for diabetes. Diabetologia 60, 793–799 (2017). - PMC - PubMed
    1. Pearson E. R. Type 2 diabetes: a multifaceted disease. Diabetologia 62, 1107–1112 (2019). - PMC - PubMed
    1. Almgren P. et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54, 2811–2819 (2011). - PubMed
    1. Vujkovic M. et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 52, 680–691 (2020). - PMC - PubMed

Publication types