Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Apr 1:2023.03.31.535160.
doi: 10.1101/2023.03.31.535160.

Rescue of blood coagulation Factor VIII exon-16 mis-splicing by antisense oligonucleotides

Rescue of blood coagulation Factor VIII exon-16 mis-splicing by antisense oligonucleotides

Victor Tse et al. bioRxiv. .

Abstract

The human Factor VIII ( F8 ) protein is essential for the blood coagulation cascade and specific F8 mutations cause the rare bleeding disorder Hemophilia A (HA). Here, we investigated the impact of HA-causing single-nucleotide mutations on F8 pre-mRNA splicing. We found that 14/97 (∼14.4%) coding sequence mutations tested in our study induced exon skipping. Splicing patterns of 4/11 (∼36.4%) F8 exons tested were especially sensitive to the presence of common disease-causing mutations. RNA-chemical probing analyses revealed a three-way junction structure at the 3' end of intron 15 (TWJ-3-15). TWJ-3-15 sequesters the polypyrimidine tract, a key determinant of 3' splice site strength. Using exon-16 of the F8 gene as a model, we designed specific antisense oligonucleotides (ASOs) that target TWJ-3-15 and identified three that promote the splicing of F8 exon-16. Interaction of TWJ-3-15 with ASOs increases accessibility of the polypyrimidine tract and inhibits the binding of hnRNPA1-dependent splicing silencing factors. Moreover, ASOs targeting TWJ-3-15 rescue diverse splicing-sensitive HA-causing mutations, most of which are distal to the 3' splice site being impacted. The TWJ-3-15 structure and its effect on mRNA splicing provide a model for HA etiology in patients harboring specific F8 mutations and provide a framework for precision RNA-based HA therapies.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources