Crosstalk between oxidative phosphorylation and immune escape in cancer: a new concept of therapeutic targets selection
- PMID: 37040057
- DOI: 10.1007/s13402-023-00801-0
Crosstalk between oxidative phosphorylation and immune escape in cancer: a new concept of therapeutic targets selection
Abstract
Background: Cancer is increasingly recognized as a metabolic disease, with evidence suggesting that oxidative phosphorylation (OXPHOS) plays a significant role in the progression of numerous cancer cells. OXPHOS not only provides sufficient energy for tumor tissue survival but also regulates conditions for tumor proliferation, invasion, and metastasis. Alterations in OXPHOS can also impair the immune function of immune cells in the tumor microenvironment, leading to immune evasion. Therefore, investigating the relationship between OXPHOS and immune escape is crucial in cancer-related research. This review aims to summarize the effects of transcriptional, mitochondrial genetic, metabolic regulation, and mitochondrial dynamics on OXPHOS in different cancers. Additionally, it highlights the role of OXPHOS in immune escape by affecting various immune cells. Finally, it concludes with an overview of recent advances in antitumor strategies targeting both immune and metabolic processes and proposes promising therapeutic targets by analyzing the limitations of current targeted drugs.
Conclusions: The metabolic shift towards OXPHOS contributes significantly to tumor proliferation, progression, metastasis, immune escape, and poor prognosis. A thorough investigation of concrete mechanisms of OXPHOS regulation in different types of tumors and the combination usage of OXPHOS-targeted drugs with existing immunotherapies could potentially uncover new therapeutic targets for future antitumor therapies.
Keywords: Cancer therapy; Immunotherapy; Metabolism; OXPHOS.
© 2023. Springer Nature Switzerland AG.
Similar articles
-
OXPHOS-targeting drugs in oncology: new perspectives.Expert Opin Ther Targets. 2023 Jul-Dec;27(10):939-952. doi: 10.1080/14728222.2023.2261631. Epub 2023 Oct 30. Expert Opin Ther Targets. 2023. PMID: 37736880 Free PMC article. Review.
-
Why All the Fuss about Oxidative Phosphorylation (OXPHOS)?J Med Chem. 2020 Dec 10;63(23):14276-14307. doi: 10.1021/acs.jmedchem.0c01013. Epub 2020 Oct 26. J Med Chem. 2020. PMID: 33103432 Free PMC article. Review.
-
Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers.Int J Mol Sci. 2021 Dec 14;22(24):13435. doi: 10.3390/ijms222413435. Int J Mol Sci. 2021. PMID: 34948229 Free PMC article. Review.
-
Targeting STAT3 and oxidative phosphorylation in oncogene-addicted tumors.Redox Biol. 2019 Jul;25:101073. doi: 10.1016/j.redox.2018.101073. Epub 2018 Dec 13. Redox Biol. 2019. PMID: 30594485 Free PMC article. Review.
-
Therapeutic Targeting of Tumor Cells and Tumor Immune Microenvironment Vulnerabilities.Front Oncol. 2022 Jun 8;12:816504. doi: 10.3389/fonc.2022.816504. eCollection 2022. Front Oncol. 2022. PMID: 35756631 Free PMC article. Review.
Cited by
-
Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment.Int J Mol Sci. 2023 May 16;24(10):8848. doi: 10.3390/ijms24108848. Int J Mol Sci. 2023. PMID: 37240194 Free PMC article. Review.
-
An increase in SNHG5 expression is associated with poor cancer prognosis, according to a meta-analysis.Eur J Med Res. 2024 Mar 12;29(1):160. doi: 10.1186/s40001-024-01745-3. Eur J Med Res. 2024. PMID: 38475928 Free PMC article.
-
Altered metabolism in cancer: insights into energy pathways and therapeutic targets.Mol Cancer. 2024 Sep 18;23(1):203. doi: 10.1186/s12943-024-02119-3. Mol Cancer. 2024. PMID: 39294640 Free PMC article. Review.
-
A comprehensive analysis of CEBPA on prognosis and function in uterine corpus endometrial carcinoma.Sci Rep. 2024 Oct 10;14(1):23773. doi: 10.1038/s41598-024-74242-6. Sci Rep. 2024. PMID: 39390018 Free PMC article.
-
A comprehensive pan-cancer analysis identifies a novel glycolysis score and its hub genes as prognostic and immunological biomarkers.Transl Cancer Res. 2023 Oct 31;12(10):2852-2874. doi: 10.21037/tcr-23-325. Epub 2023 Oct 3. Transl Cancer Res. 2023. PMID: 37969385 Free PMC article.
References
-
- L.A. Broadfield, A.A. Pane, A. Talebi, J.V. Swinnen, S.M. Fendt, Lipid metabolism in cancer: new perspectives and emerging mechanisms. Dev. Cell. 56, 1363–1393 (2021). https://doi.org/10.1016/j.devcel.2021.04.013 - DOI - PubMed
-
- U.E. Martinez-Outschoorn, M. Peiris-Pagés, R.G. Pestell, F. Sotgia, M.P. Lisanti, Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017). https://doi.org/10.1038/nrclinonc.2016.60 - DOI - PubMed
-
- M. Reina-Campos, J. Moscat, M. Diaz-Meco, Metabolism shapes the tumor microenvironment. Curr. Opin. Cell. Biol. 48, 47–53 (2017). https://doi.org/10.1016/j.ceb.2017.05.006 - DOI - PubMed - PMC
-
- L. Xia, L. Oyang, J. Lin, S. Tan, Y. Han, N. Wu, P. Yi, L. Tang, Q. Pan, S. Rao, J. Liang, Y. Tang, M. Su, X. Luo, Y. Yang, Y. Shi, H. Wang, Y. Zhou, Q. Liao, The cancer metabolic reprogramming and immune response. Mol. Cancer 20, 28 (2021). https://doi.org/10.1186/s12943-021-01316-8 - DOI - PubMed - PMC
-
- H. Xu, S. Zhou, Q. Tang, H. Xia, F. Bi, Cholesterol metabolism: new functions and therapeutic approaches in cancer. Biochim. Biophys. Acta Rev. Cancer 1874, 188394 (2020). https://doi.org/10.1016/j.bbcan.2020.188394 - DOI - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical