Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 11;24(1):266.
doi: 10.1186/s13063-023-07280-6.

Effect of EIT-guided PEEP titration on prognosis of patients with moderate to severe ARDS: study protocol for a multicenter randomized controlled trial

Affiliations

Effect of EIT-guided PEEP titration on prognosis of patients with moderate to severe ARDS: study protocol for a multicenter randomized controlled trial

Xueyan Yuan et al. Trials. .

Abstract

Background: Acute respiratory syndrome distress (ARDS) is a clinical common syndrome with high mortality. Electrical impedance tomography (EIT)-guided positive end-expiratory pressure (PEEP) titration can achieve the compromise between lung overdistension and collapse which may minimize ventilator-induced lung injury in these patients. However, the effect of EIT-guided PEEP titration on the clinical outcomes remains unknown. The objective of this trial is to investigate the effects of EIT-guided PEEP titration on the clinical outcomes for moderate or severe ARDS, compared to the low fraction of inspired oxygen (FiO2)-PEEP table.

Methods: This is a prospective, multicenter, single-blind, parallel-group, adaptive designed, randomized controlled trial (RCT) with intention-to-treat analysis. Adult patients with moderate to severe ARDS less than 72 h after diagnosis will be included in this study. Participants in the intervention group will receive PEEP titrated by EIT with a stepwise decrease PEEP trial, whereas participants in the control group will select PEEP based on the low FiO2-PEEP table. Other ventilator parameters will be set according to the ARDSNet strategy. Participants will be followed up until 28 days after enrollment. Three hundred seventy-six participants will be recruited based on a 15% decrease of 28-day mortality in the intervention group, with an interim analysis for sample size re-estimation and futility assessment being undertaken once 188 participants have been recruited. The primary outcome is 28-day mortality. The secondary outcomes include ventilator-free days and shock-free days at day 28, length of ICU and hospital stay, the rate of successful weaning, proportion requiring rescue therapies, compilations, respiratory variables, and Sequential Organ Failure Assessment (SOFA).

Discussion: As a heterogeneous syndrome, ARDS has different responses to treatment and further results in different clinical outcomes. PEEP selection will depend on the properties of patients and can be individually achieved by EIT. This study will be the largest randomized trial to investigate thoroughly the effect of individual PEEP titrated by EIT in moderate to severe ARDS patients to date.

Trial registration: ClinicalTrial.gov NCT05207202. First published on January 26, 2022.

Keywords: Acute respiratory syndrome distress; Clinical trial; Electrical impedance tomography; Mechanical ventilation; Positive end-expiratory pressure.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study flow diagram. MV, mechanical ventilation; ARDS, acute respiratory distress syndrome; PEEP, positive end-expiratory pressure; EIT, electrical impedance tomography
Fig. 2
Fig. 2
Setting positive end-expiratory pressure (PEEP) based on electrical impedance tomography. PEEP, positive end-expiratory pressure

Similar articles

Cited by

References

    1. Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710. doi: 10.1001/jama.2017.21907. - DOI - PubMed
    1. Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet. 2021;398(10300):622–637. doi: 10.1016/S0140-6736(21)00439-6. - DOI - PMC - PubMed
    1. Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562–572. doi: 10.1056/NEJMra1608077. - DOI - PubMed
    1. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. - PubMed
    1. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–2136. doi: 10.1056/NEJMra1208707. - DOI - PubMed

Publication types

Associated data