Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul;27(7):3677-3685.
doi: 10.1109/JBHI.2023.3266587. Epub 2023 Jun 30.

Deep Learning Identifies Intelligible Predictors of Poor Prognosis in Chronic Kidney Disease

Deep Learning Identifies Intelligible Predictors of Poor Prognosis in Chronic Kidney Disease

Ping Liang et al. IEEE J Biomed Health Inform. 2023 Jul.

Abstract

Early diagnosis and prediction of chronic kidney disease (CKD) progress within a given duration are critical to ensure personalized treatment, which could improve patients' quality of life and prolong survival time. In this study, we explore the intelligibility of machine-learning and deep-learning models on end-stage renal disease (ESRD) prediction, based on readily-accessible clinical and laboratory features of patients suffering from CKD. Eight machine learning models were used to predict whether a patient suffering from CKD would progress to ESRD within three years based on demographics, clinical,and comorbidity information. LASSO, random forest, and XGBoost were used to identify the most significant markers. In addition, we introduced four advanced attribution methods to the deep learning model to enhance model intelligibility. The deep learning model achieved an AUC-ROC of 0.8991, which was significantly higher than that of baseline models. The interpretation generated by deep learning with attribution methods, random forest, and XGBoost was consistent with clinical knowledge, whereas LASSO-based interpretation was inconsistent. Hematuria, proteinuria, potassium, urine albumin to creatinine ratio were positively associated with the progression of CKD, while eGFR and urine creatinine were negatively associated. In conclusion, deep learning with attribution algorithms could identify intelligible features of CKD progression. Our model identified a number of critical, but under-reported features, which may be novel markers for CKD progression. This study provides physicians with solid data-driven evidence for using machine learning for CKD clinical management and treatment.

PubMed Disclaimer

Similar articles

Cited by

References

Publication types

MeSH terms