Usefulness of copper filters in digital chest radiography based on the relationship between effective detective quantum efficiency and deep learning-based segmentation accuracy of the tumor area
- PMID: 37046154
- DOI: 10.1007/s12194-023-00719-0
Usefulness of copper filters in digital chest radiography based on the relationship between effective detective quantum efficiency and deep learning-based segmentation accuracy of the tumor area
Abstract
This study aimed to determine the optimal radiographic conditions for detecting lesions on digital chest radiographs using an indirect conversion flat-panel detector with a copper (Cu) filter. First, we calculated the effective detective quantum efficiency (DQE) by considering clinical conditions to evaluate the image quality. We then measured the segmentation accuracy using a U-net convolutional network to verify the effectiveness of the Cu filter. We obtained images of simulated lung tumors using 10-mm acrylic spheres positioned at the right lung apex and left middle lung of an adult chest phantom. The Dice coefficient was calculated as the similarity between the output and learning images to evaluate the accuracy of tumor area segmentation using U-net. Our results showed that effective DQE was higher in the following order up to the spatial frequency of 2 cycles/mm: 120 kV + no Cu, 120 kV + Cu 0.1 mm, and 120 kV + Cu 0.2 mm. The segmented region was similar to the true region for mass-area extraction in the left middle lobe. The lesion segmentation in the upper right lobe with 120 kV + no Cu and 120 kV + Cu 0.1 mm was less successful. However, adding a Cu filter yielded reproducible images with high Dice coefficients, regardless of the tumor location. We confirmed that adding a Cu filter decreases the X-ray absorption efficiency while improving the signal-to-noise ratio (SNR). Furthermore, artificial intelligence accurately segments low-contrast lesions.
Keywords: Beam quality; Chest radiography; Copper filter; Deep learning; Effective DQE.
© 2023. The Author(s), under exclusive licence to Japanese Society of Radiological Technology and Japan Society of Medical Physics.
References
-
- UNSCEAR. Medical radical exposures. Sources and effects of ionizing radiation. UNSCER 2008 Report. New York: United Nations. Annex A; 2010
-
- Oda N, Kurokawa Y, Uehara S, Sasaki N, Yamagata K, Yamazaki S, et al. Evaluation of 90 kV beam with 0.15-mm Cu filter in chest radiography using CsI-Flat panel detector. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2020;76:463–73. https://doi.org/10.6009/jjrt.2020_JSRT_76.5.463 . - DOI - PubMed
-
- Oda N, Tabata Y, Mizuta M, Asada Y, Nakano T, Hara T, et al. Optimal beam quality in chest radiography using CsI-flat panel detector for detection of pulmonary nodules. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2021;77:335–43. https://doi.org/10.6009/jjrt.2021_JSRT_77.4.335 . - DOI - PubMed
-
- Sun Z, Lin C, Tyan Y, Ng KH. Optimization of chest radiographic imaging parameters: A comparison of image quality and entrance skin dose for digital chest radiography systems. Clin Imaging. 2012;36:279–86. https://doi.org/10.1016/j.clinimag.2011.09.006 . - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous