Artificial Intelligence in Cardiology: Why So Many Great Promises and Expectations, but Still a Limited Clinical Impact?
- PMID: 37048817
- PMCID: PMC10095331
- DOI: 10.3390/jcm12072734
Artificial Intelligence in Cardiology: Why So Many Great Promises and Expectations, but Still a Limited Clinical Impact?
Abstract
Looking at the extremely large amount of literature, as summarized in two recent reviews on applications of Artificial Intelligence in Cardiology, both in the adult and pediatric age groups, published in the Journal of Clinical Medicine [...].
Conflict of interest statement
The author declares no conflict of interest.
Similar articles
-
A primer on artificial intelligence for the paediatric cardiologist.Cardiol Young. 2020 Jul;30(7):934-945. doi: 10.1017/S1047951120001493. Epub 2020 Jun 22. Cardiol Young. 2020. PMID: 32624071 Review.
-
A Primer on the Present State and Future Prospects for Machine Learning and Artificial Intelligence Applications in Cardiology.Can J Cardiol. 2022 Feb;38(2):169-184. doi: 10.1016/j.cjca.2021.11.009. Epub 2021 Nov 24. Can J Cardiol. 2022. PMID: 34838700 Review.
-
Artificial Intelligence in Cardiology.J Am Coll Cardiol. 2018 Jun 12;71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521. J Am Coll Cardiol. 2018. PMID: 29880128 Review.
-
Artificial Neural Networks in Cardiovascular Diseases and its Potential for Clinical Application in Molecular Imaging.Curr Radiopharm. 2021;14(3):209-219. doi: 10.2174/1874471013666200621191259. Curr Radiopharm. 2021. PMID: 32564769 Review.
-
Artificial Intelligence in Cardiology-A Narrative Review of Current Status.J Clin Med. 2022 Jul 5;11(13):3910. doi: 10.3390/jcm11133910. J Clin Med. 2022. PMID: 35807195 Free PMC article. Review.
Cited by
-
Value of Artificial Intelligence for Enhancing Suspicion of Cardiac Amyloidosis Using Electrocardiography and Echocardiography: A Narrative Review.J Am Heart Assoc. 2025 Apr 15;14(8):e036533. doi: 10.1161/JAHA.124.036533. Epub 2025 Apr 10. J Am Heart Assoc. 2025. PMID: 40207501 Free PMC article. Review.
References
-
- Barbieri A., Albini A., Chiusolo S., Forzati N., Laus V., Maisano A., Muto F., Passiatore M., Stuani M., Triglia L.T., et al. Three-Dimensional Automated, Machine-Learning-Based Left Heart Chamber Metrics: Associations with Prevalent Vascular Risk Factors and Cardiovascular Diseases. J. Clin. Med. 2022;11:7363. doi: 10.3390/jcm11247363. - DOI - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources