TiO2-Coated Silicon Nanoparticle Core-Shell Structure for High-Capacity Lithium-Ion Battery Anode Materials
- PMID: 37049238
- PMCID: PMC10096828
- DOI: 10.3390/nano13071144
TiO2-Coated Silicon Nanoparticle Core-Shell Structure for High-Capacity Lithium-Ion Battery Anode Materials
Abstract
Silicon-based anode materials are considered one of the highly promising anode materials due to their high theoretical energy density; however, problems such as volume effects and solid electrolyte interface film (SEI) instability limit the practical applications. Herein, silicon nanoparticles (SiNPs) are used as the nucleus and anatase titanium dioxide (TiO2) is used as the buffer layer to form a core-shell structure to adapt to the volume change of the silicon-based material and improve the overall interfacial stability of the electrode. In addition, silver nanowires (AgNWs) doping makes it possible to form a conductive network structure to improve the conductivity of the material. We used the core-shell structure SiNPs@TiO2/AgNWs composite as an anode material for high-efficiency Li-ion batteries. Compared with the pure SiNPs electrode, the SiNPs@TiO2/AgNWs electrode exhibits excellent electrochemical performance with a first discharge specific capacity of 3524.2 mAh·g-1 at a current density of 400 mA·g-1, which provides a new idea for the preparation of silicon-based anode materials for high-performance lithium-ion batteries.
Keywords: AgNWs doping; SiNPs@TiO2 core-shell structure; lithium-ion batteries; silicon-based anode materials.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







Similar articles
-
Strategy for enhanced performance of silicon nanoparticle anodes for lithium-ion batteries.RSC Adv. 2022 Jun 16;12(28):17889-17897. doi: 10.1039/d2ra02007f. eCollection 2022 Jun 14. RSC Adv. 2022. PMID: 35765341 Free PMC article.
-
A multilayered sturdy shell protects silicon nanoparticle Si@void C@TiO2 as an advanced lithium ion battery anode.Phys Chem Chem Phys. 2021 Feb 19;23(6):3934-3941. doi: 10.1039/d0cp05434h. Phys Chem Chem Phys. 2021. PMID: 33543199
-
Silicon/Mesoporous Carbon/Crystalline TiO2 Nanoparticles for Highly Stable Lithium Storage.ACS Nano. 2016 Nov 22;10(11):10524-10532. doi: 10.1021/acsnano.6b06517. Epub 2016 Oct 27. ACS Nano. 2016. PMID: 27786460
-
Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si-C Composite Anode for High-Performance Lithium-Ion Batteries.Materials (Basel). 2022 Jun 16;15(12):4264. doi: 10.3390/ma15124264. Materials (Basel). 2022. PMID: 35744323 Free PMC article. Review.
-
Research progress of silicon-based anode materials for lithium-ion batteries.RSC Adv. 2025 Apr 7;15(14):10731-10753. doi: 10.1039/d5ra01268f. eCollection 2025 Apr 4. RSC Adv. 2025. PMID: 40196822 Free PMC article. Review.
Cited by
-
Research Progresses on Nano-Structured Silicon-Based Materials as Anode for Lithium-Ion Batteries.Materials (Basel). 2025 Feb 14;18(4):830. doi: 10.3390/ma18040830. Materials (Basel). 2025. PMID: 40004358 Free PMC article. Review.
-
Enhancing the Stability and Initial Coulombic Efficiency of Silicon Anodes through Coating with Glassy ZIF-4.Nanomaterials (Basel). 2023 Dec 20;14(1):18. doi: 10.3390/nano14010018. Nanomaterials (Basel). 2023. PMID: 38202473 Free PMC article.
-
Electrochemical performance of porous TiO2 microspheres coated with nitrogen-doped carbon as an anode material for lithium-ion batteries.RSC Adv. 2025 Apr 17;15(15):11790-11798. doi: 10.1039/d5ra01379h. eCollection 2025 Apr 9. RSC Adv. 2025. PMID: 40248143 Free PMC article.
-
Bio-Inspired Electrodes with Rational Spatiotemporal Management for Lithium-Ion Batteries.Adv Sci (Weinh). 2024 Jul;11(28):e2400405. doi: 10.1002/advs.202400405. Epub 2024 Apr 29. Adv Sci (Weinh). 2024. PMID: 38682479 Free PMC article. Review.
References
-
- Ahmadi L., Young S.B., Fowler M., Fraser R.A., Achachlouei M.A. A cascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 2017;22:111–124. doi: 10.1007/s11367-015-0959-7. - DOI
-
- Xiong C.Y., Yang Q., Dang W.H., Zhou Q.S., Jiang X., Sun X.H., Wang Z.Q., An M., Ni Y.H. A multifunctional paper-based supercapacitor with excellent temperature adaptability, plasticity, tensile strength, self-healing, and high thermoelectric effects. J. Mater. Chem. A. 2023;11:4769–4779. doi: 10.1039/D2TA09654D. - DOI
-
- Xiong C.Y., Zhang Y.K., Ni Y.H. Recent progress on development of electrolyte and aerogel electrodes applied in supercapacitors. J. Power Sources. 2023;560:232698. doi: 10.1016/j.jpowsour.2023.232698. - DOI
-
- Poudel M.B., Kim A.H., Ramakrishan S., Logeshwaran N., Ramasamy S.K., Kim H.J., Yoo D.J. Integrating the essence of metal organic framework-derived ZnCoTe-N-C/MoS2 cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors. Compos. Part B. 2022;247:110339. doi: 10.1016/j.compositesb.2022.110339. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources