Advanced Cellulose-Nanocarbon Composite Films for High-Performance Triboelectric and Piezoelectric Nanogenerators
- PMID: 37049298
- PMCID: PMC10097288
- DOI: 10.3390/nano13071206
Advanced Cellulose-Nanocarbon Composite Films for High-Performance Triboelectric and Piezoelectric Nanogenerators
Abstract
Natural polymers such as cellulose have interesting tribo- and piezoelectric properties for paper-based energy harvesters, but their low performance in providing sufficient output power is still an impediment to a wider deployment for IoT and other low-power applications. In this study, different types of celluloses were combined with nanosized carbon fillers to investigate their effect on the enhancement of the electrical properties in the final nanogenerator devices. Cellulose pulp (CP), microcrystalline cellulose (MCC) and cellulose nanofibers (CNFs) were blended with carbon black (CB), carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The microstructure of the nanocomposite films was characterized by scanning electron and probe microscopies, and the electrical properties were measured macroscopically and at the local scale by piezoresponse force microscopy. The highest generated output voltage in triboelectric mode was obtained from MCC films with CNTs and CB, while the highest piezoelectric voltage was produced in CNF-CNT films. The obtained electrical responses were discussed in relation to the material properties. Analysis of the microscopic response shows that pulp has a higher local piezoelectric d33 coefficient (145 pC/N) than CNF (14 pC/N), while the macroscopic response is greatly influenced by the excitation mode and the effective orientation of the crystals relative to the mechanical stress. The increased electricity produced from cellulose nanocomposites may lead to more efficient and biodegradable nanogenerators.
Keywords: cellulose; nanocarbon; nanocomposite; nanogenerator; piezoelectricity; piezoresponse force microscopy; triboelectricity.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Wu C., Wang A.C., Ding W., Guo H., Wang Z.L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019;9:1802906. doi: 10.1002/aenm.201802906. - DOI
-
- Sezer N., Koç M. A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting. Nano Energy. 2021;80:105567. doi: 10.1016/j.nanoen.2020.105567. - DOI
-
- Li J., Shepelin N.A., Sherrell P.C., Ellis A.V. Poly(Dimethylsiloxane) for Triboelectricity: From Mechanisms to Practical Strategies. Chem. Mater. 2021;33:4304–4327. doi: 10.1021/acs.chemmater.1c01275. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
