Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jun 1;24(11):e202300055.
doi: 10.1002/cbic.202300055. Epub 2023 May 4.

Efficient Chemical and Enzymatic Syntheses of FAD Nucleobase Analogues and Their Analysis as Enzyme Cofactors

Affiliations

Efficient Chemical and Enzymatic Syntheses of FAD Nucleobase Analogues and Their Analysis as Enzyme Cofactors

Ateek Shah et al. Chembiochem. .

Abstract

Flavin adenine dinucleotide (FAD) is an essential redox cofactor in cellular metabolism. The organic synthesis of FAD typically involves coupling flavin mononucleotide (FMN) with adenosine monophosphate, however, existing synthesis routes present limitations such as multiple steps, low yields, and/or difficult-to-obtain starting materials. In this study, we report the synthesis of FAD nucleobase analogues with guanine/cytosine/uracil in place of adenine and deoxyadenosine in place of adenosine using chemical and enzymatic approaches with readily available starting materials, achieved in 1-3 steps with moderate yields (10-57 %). We find that the enzymatic route using Methanocaldococcus jannaschii FMN adenylyltransferase (MjFMNAT) is versatile and can produce these FAD analogues in high yields. Further, we demonstrate that Escherichia coli glutathione reductase is capable of binding and using these analogues as cofactors. Finally, we show that FAD nucleobase analogues can be synthesized inside a cell from cellular substrates FMN and nucleoside triphosphates by the heterologous expression of MjFMNAT. This lays the foundation for their use in studying the molecular role of FAD in cellular metabolism and as biorthogonal reagents in biotechnology and synthetic biology.

Keywords: FAD analogues as active cofactors; FAD nucleobase analogues; enzymatic and organic synthesis of flavins; flavin adenine dinucleotide (FAD); vitamin B2.

PubMed Disclaimer

References

    1. D. J. Manstein, E. F. Pai, J. Biol. Chem. 1986, 261, 16169-16173.
    1. M. Barile, C. Brizio, D. Valenti, C. D. Virgilio, S. Passarella, Eur. J. Biochem. 2000, 267, 4888-4900.
    1. O. Dym, D. Eisenberg, Protein Sci. 2001, 10, 1712-1728.
    1. K. A. Denessiouk, V. V. Rantanen, M. S. Johnson, Proteins Struct. Funct. Genet. 2001, 44, 282-291.
    1. A. Serrano, S. Frago, A. Velázquez-Campoy, M. Medina, Int. J. Mol. Sci. 2012, 13, 14492-14517.

Publication types

MeSH terms