Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human-Machine Interaction
- PMID: 37052831
- PMCID: PMC10102281
- DOI: 10.1007/s40820-023-01084-8
Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human-Machine Interaction
Abstract
Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human-machine interaction in complex scenarios still remains challenging. Herein, we develop a skin-inspired ultra-tough e-skin with tunable mechanical properties by a physical cross-linking salting-freezing-thawing method. The gelling agent (β-Glycerophosphate sodium: Gp) induces the aggregation and binding of PVA molecular chains and thereby toughens them (stress up to 5.79 MPa, toughness up to 13.96 MJ m-3). Notably, due to molecular self-assembly, hydrogels can be fully recycled and reprocessed by direct heating (100 °C for a few seconds), and the tensile strength can still be maintained at about 100% after six recoveries. The hydrogel integrates transparency (> 60%), super toughness (up to 13.96 MJ m-3, bearing 1500 times of its own tensile weight), good antibacterial properties (E. coli and S. aureus), UV protection (Filtration: 80%-90%), high electrical conductivity (4.72 S m-1), anti-swelling and recyclability. The hydrogel can not only monitor daily physiological activities, but also be used for complex activities underwater and message encryption/decryption. We also used it to create a complete finger joint rehabilitation system with an interactive interface that dynamically presents the user's health status. Our multifunctional electronic skin will have a profound impact on the future of new rehabilitation medical, human-machine interaction, VR/AR and the metaverse fields.
Keywords: Flexible electronics; Human–machine interaction; Knuckle training; Supramolecular; Ultra-tough hydrogel.
© 2023. The Author(s).
Figures







Similar articles
-
Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing.ACS Appl Mater Interfaces. 2020 May 13;12(19):22225-22236. doi: 10.1021/acsami.0c06091. Epub 2020 May 4. ACS Appl Mater Interfaces. 2020. PMID: 32315157
-
A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission.Mater Horiz. 2022 Nov 28;9(12):3057-3069. doi: 10.1039/d2mh00456a. Mater Horiz. 2022. PMID: 36239123
-
Strong, Tough, and Anti-Swelling Supramolecular Conductive Hydrogels for Amphibious Motion Sensors.Small. 2023 Nov;19(44):e2303612. doi: 10.1002/smll.202303612. Epub 2023 Jul 2. Small. 2023. PMID: 37394709
-
Tough Supramolecular Hydrogels Crafted via Lignin-Induced Self-Assembly.Adv Mater. 2024 Sep;36(36):e2406671. doi: 10.1002/adma.202406671. Epub 2024 Jul 10. Adv Mater. 2024. PMID: 38988151
-
Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review.Soft Matter. 2021 Oct 13;17(39):8786-8804. doi: 10.1039/d1sm00997d. Soft Matter. 2021. PMID: 34596200 Review.
Cited by
-
Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses.Nanomicro Lett. 2023 Nov 13;16(1):14. doi: 10.1007/s40820-023-01235-x. Nanomicro Lett. 2023. PMID: 37955844 Free PMC article. Review.
-
Stretchable Full-Color Phosphorescent PVA-Based Ionogels for Multimodal Sensing-Visual Integration Applications.Adv Sci (Weinh). 2025 Feb;12(5):e2411229. doi: 10.1002/advs.202411229. Epub 2024 Dec 12. Adv Sci (Weinh). 2025. PMID: 39665311 Free PMC article.
-
Polyphenol-Mediated Multifunctional Human-Machine Interface Hydrogel Electrodes in Bioelectronics.Small Sci. 2024 Nov 21;5(1):2400362. doi: 10.1002/smsc.202400362. eCollection 2025 Jan. Small Sci. 2024. PMID: 40212659 Free PMC article. Review.
-
Open and closed microfluidics for biosensing.Mater Today Bio. 2024 Apr 4;26:101048. doi: 10.1016/j.mtbio.2024.101048. eCollection 2024 Jun. Mater Today Bio. 2024. PMID: 38633866 Free PMC article. Review.
-
Nanofiber Composite Reinforced Organohydrogels for Multifunctional and Wearable Electronics.Nanomicro Lett. 2023 Jul 7;15(1):174. doi: 10.1007/s40820-023-01148-9. Nanomicro Lett. 2023. PMID: 37420043 Free PMC article.
References
-
- Chen Y, Chen E, Wang Z, Ling Y, Fisher R, et al. Flexible, durable, and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction. Nano Energy. 2022;104:107929. doi: 10.1016/j.nanoen.2022.107929. - DOI
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous