Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient
- PMID: 37061517
- PMCID: PMC10105773
- DOI: 10.1038/s41467-023-37861-7
Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient
Abstract
Contrasting the paradigm that methane is only produced in anoxic conditions, recent discoveries show that oxic methane production (OMP, aka the methane paradox) occurs in oxygenated surface waters worldwide. OMP drivers and their contribution to global methane emissions, however, are not well constrained. In four adjacent pre-alpine lakes, we determine the net methane production rates in oxic surface waters using two mass balance approaches, accounting for methane sources and sinks. We find that OMP occurs in three out of four studied lakes, often as the dominant source of diffusive methane emissions. Correlations of net methane production versus chlorophyll-a, Secchi and surface mixed layer depths suggest a link with photosynthesis and provides an empirical upscaling approach. As OMP is a methane source in direct contact with the atmosphere, a better understanding of its extent and drivers is necessary to constrain the atmospheric methane contribution by inland waters.
© 2023. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures





Similar articles
-
Strong Subseasonal Variability of Oxic Methane Production Challenges Methane Budgeting in Freshwater Lakes.Environ Sci Technol. 2024 Nov 5;58(44):19690-19701. doi: 10.1021/acs.est.4c07413. Epub 2024 Oct 24. Environ Sci Technol. 2024. PMID: 39445507
-
Magnitude and Drivers of Oxic Methane Production in Small Temperate Lakes.Environ Sci Technol. 2022 Aug 2;56(15):11041-11050. doi: 10.1021/acs.est.2c01730. Epub 2022 Jul 12. Environ Sci Technol. 2022. PMID: 35820110
-
Epilimnetic oligotrophication increases contribution of oxic methane production to atmospheric methane flux from stratified lakes.Water Res. 2025 Jan 1;268(Pt A):122602. doi: 10.1016/j.watres.2024.122602. Epub 2024 Oct 10. Water Res. 2025. PMID: 39454273
-
Contribution of oxic methane production to surface methane emission in lakes and its global importance.Nat Commun. 2019 Dec 2;10(1):5497. doi: 10.1038/s41467-019-13320-0. Nat Commun. 2019. PMID: 31792203 Free PMC article.
-
Methane emissions from rice paddies natural wetlands, and lakes in China: synthesis and new estimate.Glob Chang Biol. 2013 Jan;19(1):19-32. doi: 10.1111/gcb.12034. Epub 2012 Oct 26. Glob Chang Biol. 2013. PMID: 23504718 Review.
Cited by
-
Lake surface cooling drives littoral-pelagic exchange of dissolved gases.Sci Adv. 2024 Jan 26;10(4):eadi0617. doi: 10.1126/sciadv.adi0617. Epub 2024 Jan 24. Sci Adv. 2024. PMID: 38266091 Free PMC article.
-
Phosphonate consumers potentially contributing to methane production in Brazilian soda lakes.Extremophiles. 2023 Nov 21;28(1):4. doi: 10.1007/s00792-023-01318-y. Extremophiles. 2023. PMID: 37987855
-
Methane formation driven by light and heat prior to the origin of life and beyond.Nat Commun. 2023 Aug 1;14(1):4364. doi: 10.1038/s41467-023-39917-0. Nat Commun. 2023. PMID: 37528079 Free PMC article.
-
Microbial Communities Drive Methane Fluxes From Floodplain Lakes-A Hydrological Gradient Perspective.Environ Microbiol. 2025 Jun;27(6):e70127. doi: 10.1111/1462-2920.70127. Environ Microbiol. 2025. PMID: 40545729 Free PMC article.
-
Aerobic methane synthesis and dynamics in a river water environment.Limnol Oceanogr. 2023 Aug;68(8):1762-1774. doi: 10.1002/lno.12383. Epub 2023 Jun 14. Limnol Oceanogr. 2023. PMID: 37928964 Free PMC article.
References
-
- Karl DM, et al. Aerobic production of methane in the sea. Nat. Geosci. 2008;1:473–478. doi: 10.1038/ngeo234. - DOI
-
- Tang KW, McGinnis DF, Frindte K, Brüchert V, Grossart H-P. Paradox reconsidered: methane oversaturation in well-oxygenated lake waters. Limnol. Oceanogr. 2014;59:275–284. doi: 10.4319/lo.2014.59.1.0275. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials