Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jul;25(7):777-785.
doi: 10.1007/s11912-023-01417-1. Epub 2023 Apr 18.

Antiangiogenic Therapy for Malignant Brain Tumors: Does It Still Matter?

Affiliations
Review

Antiangiogenic Therapy for Malignant Brain Tumors: Does It Still Matter?

Alessia Pellerino et al. Curr Oncol Rep. 2023 Jul.

Abstract

Purpose of review: To summarize the mechanisms of tumor angiogenesis and resistance to antiangiogenic therapy, and the influence on tumor microenvironment.

Recent findings: Several clinical trials have investigated the activity of anti-VEGF monoclonal antibodies and tyrosine kinase inhibitors in glioblastoma, shedding the light on their limitations in terms of disease control and survival. We have outlined the mechanisms of resistance to antiangiogenic therapy, including vessel co-option, hypoxic signaling in response to vessel destruction, modulation of glioma stem cells, and trafficking of tumor-associated macrophages in tumor microenvironment. Moreover, novel generation of antiangiogenic compounds for glioblastoma, including small interfering RNAs and nanoparticles, as a delivery vehicle, could enhance selectivity and reduce side effects of treatments. There is still a rationale for the use of antiangiogenic therapy, but a better understanding of vascular co-option, vascular mimicry, and dynamic relationships between immunosuppressive microenvironment and blood vessel destruction is crucial to develop next-generation antiangiogenic compounds.

Keywords: Antiangiogenic therapy; Bevacizumab; Glioblastoma; High-grade glioma; Tyrosine kinase inhibitors.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

References

    1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996. doi: 10.1056/NEJMoa043330. - DOI - PubMed
    1. Perry JR, Laperriere N, O'Callaghan CJ, Brandes AA, Menten J, Phillips C, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027–1037. doi: 10.1056/NEJMoa1611977. - DOI - PubMed
    1. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–4740. doi: 10.1200/JCO.2008.19.8721. - DOI - PubMed
    1. Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–745. doi: 10.1200/JCO.2008.16.3055. - DOI - PMC - PubMed
    1. Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med. 2017;377(20):1954–1963. doi: 10.1056/NEJMoa1707358. - DOI - PubMed

MeSH terms

Substances